
Remote Sensing of Environment 124 (2012) 454–465

Contents lists available at SciVerse ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Carnegie Airborne Observatory-2: Increasing science data dimensionality via
high-fidelity multi-sensor fusion

Gregory P. Asner a,⁎, David E. Knapp a, Joseph Boardman a,b, Robert O. Green c, Ty Kennedy-Bowdoin a,
Michael Eastwood c, Roberta E. Martin a, Christopher Anderson a, Christopher B. Field a

a Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
b Analytical Imaging and Geophysics LLC, 4450 Arapahoe Avenue, Suite 100, Boulder, CO 80303, USA
c Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
⁎ Corresponding author. Tel.: +1 650 462 1047.
E-mail address: gpa@stanford.edu (G.P. Asner).

0034-4257/$ – see front matter © 2012 Elsevier Inc. All
doi:10.1016/j.rse.2012.06.012
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 February 2012
Received in revised form 13 June 2012
Accepted 13 June 2012
Available online 4 July 2012

Keywords:
Airborne remote sensing
CAO
Data fusion
Hyperspectral
Imaging spectroscopy
LiDAR, Light detection and ranging
Macroscale ecology
The Carnegie Airborne Observatory (CAO) was developed to address a need for macroscale measurements that
reveal the structural, functional and organismic composition of Earth's ecosystems. In 2011, we completed and
launched the CAO-2 next generation Airborne Taxonomic Mapping Systems (AToMS), which includes a high-
fidelity visible-to-shortwave infrared (VSWIR) imaging spectrometer (380–2510 nm), dual-laser waveform light
detection and ranging (LiDAR) scanner, and high spatial resolution visible-to-near infrared (VNIR) imaging spec-
trometer (365–1052 nm). Here, we describe how multiple data streams from these sensors can be fused using
hardware and software co-alignment and processing techniques. With these data streams, we quantitatively
demonstrate that precision data fusion greatly increases the dimensionality of the ecological information derived
from remote sensing. We compare the data dimensionality of two contrasting scenes — a built environment at
Stanford University and a lowland tropical forest in Amazonia. Principal components analysis revealed 336 di-
mensions (degrees of freedom) in the Stanford case, and 218 dimensions in the Amazon. The Amazon case pre-
sents what could be the highest level of remotely sensed data dimensionality ever reported for a forested
ecosystem. Simulated misalignment of data streams reduced the effective information content by up to 48%,
highlighting the critical role of achieving high precision when undertaking multi-sensor fusion. The instrumen-
tation and methods described here are a pathfinder for future airborne applications undertaken by the National
Ecological Observatory Network (NEON) and other organizations.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Ecological research has trended toward questions of increasing
complexity, particularly with respect to the interactions among or-
ganisms, including humans, with the environment at multiple spatial
and temporal scales. This increasing complexity has come with the
understanding that our biosphere is in a state of non-equilibrium
change (Biggs et al., 2009). The velocity of climate change, and the
pace of land-use change, now likely exceed the migration potential
of many species and functional groups of species (Asner et al., 2010;
Loarie et al., 2009), and this process has already begun to rearrange
the composition of our biosphere (Parmesan, 2006; Wake et al.,
2009).

With scientific questions increasingly focused on large-scale com-
positional change in our biosphere, the breadth and sophistication
with which observations are made have rapidly evolved. There is
much ongoing effort throughout the research community to advance
observational capabilities in the field, in laboratories, and with
rights reserved.
remote sensing. New field-based sensor networks are being designed
to record changes in specific compositional properties and their con-
trols, such as animal presence and ambient temperatures, distributed
over space and time (Porter et al., 2005). In the lab, advances in high-
throughput genetic and chemometric assays have increased our abil-
ity to observe patterns of compositional change among samples col-
lected throughout ecosystems (Ratnasingham & Hebert, 2007). And
space-based observing has increased our ability to detect global-
scale changes in forest cover, regional variation in community type,
and sub-regional patterns of plant functional type or target species
(Turner et al., 2003).

Satellite technology is powerful because it provides vegetation
metrics over large regions—metrics which integrate multiple ecolog-
ical properties and processes into a single measurement. For example,
the normalized difference vegetation index (NDVI) – a metric of can-
opy greenness (Hatfield, 1984) – integrates variation in leaf chemical
properties, leaf area index, canopy architecture, species composition,
land cover and other factors (DeFries & Townsend, 1995; Gitelson &
Merzlyak, 1997; Sellers, 1985; Verma et al., 1993). As a result, the
NDVI has been used in many studies linking greenness to integrated
plant performance variables such a primary productivity (e.g., Field
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et al., 1998). However, macroscale ecology has evolved to recognize
the separate roles that vegetation structure, function, and organisms
play in regulating carbon and water cycles, biological diversity and
other biospheric properties and processes (Bonan et al., 2002;
Medvigy et al., 2009). Traditional satellite metrics may be correlated
with these factors, but rarely so in a way that provides quantitative
attribution to specific drivers of change. As a result, there remains a
need for macroscale observations that reveal differential changes in
vegetation structure, function and composition. Spatially-explicit
observations could also help the remote sensing and modeling com-
munities to incorporate an enormous amount of field-based data
available on myriad vegetation properties. For this, the airborne per-
spective has proven extremely powerful.

Airborne observation is one of the oldest forms of remote sensing
(Fensham & Fairfax, 2002), and the technology has advanced from
monochromatic analog cameras to high-fidelity spectral–optical,
radar, and LiDAR (light detection and ranging) technologies. Contem-
porary studies using modern airborne sensors have typically focused
on a specific observation, such as vegetation type from optical cam-
eras, canopy height from LiDAR and radar, or canopy chemistry
from spectrometers (Lefsky et al., 2002; McGraw et al., 1998; Ustin
et al., 2004). More recently, efforts to combine data from different
technologies, often collected from separate aircraft, have yielded
multi-dimensional data that more closely address emerging scientific
questions on changing biospheric composition (Clark et al., 2011;
Medvigy & Moorcroft, 2012; Thomas et al., 2006; Varga & Asner,
2008). These and other studies have provided justification for the
use of multi-sensor observations to increase data dimensionality.

In this context, the Carnegie Airborne Observatory (CAO) was de-
veloped to more fully probe the structure, function and composition
of ecosystems at the macroscale of thousands to millions of hectares.
In 2006, a visible-to-near infrared (VNIR) imaging spectrometer and
waveform LiDAR scanner were integrated into a system called CAO-
Alpha (Asner et al., 2007). The premise behind the CAO, starting
with the Alpha system and continuing up to the present, is that a
fully integrated set of orthogonally-distributed observations, incorpo-
rating measurements expressly selected for multi-dimensional analy-
sis of ecosystems, would advance our understanding of the biosphere
in three ways: (i) by resolving ecological properties at scales com-
mensurate with the flows of energy, materials, and organisms (gene
flow) within and among ecosystems; (ii) by developing new under-
standing at the macroscale, yet with fine biological resolution, that
VSWIR LiDAR
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Fig. 1. Schematic view of the CAO AToMS sensor heads including, from left to right:
visible-to-shortwave infrared imaging spectrometer (VSWIR), waveform light detec-
tion and ranging (LiDAR) scanner, and visible-to-near infrared imaging spectrometer
(VNIR).
is largely intractable from the orbital vantage point; and (iii) by facilitat-
ing fundamental discoveries that have eluded ecology in the past. As of
June 2012, the CAO has supportedmore than 100 collaborator-led stud-
ies and dozens of internal projects, with ecological results reported in
more than 70 peer-reviewed papers reflective of progress in each of
these three areas (http://cao.ciw.edu). However, studies in the CAO-
Alpha era also highlighted a need to further increase the dimensionality
of the airborne data, particularly in terms of vegetation function (chem-
istry) and biological diversity. Following a concurrent activity to define
technology and science-algorithm requirements, the next generation
CAO-2 Airborne Taxonomic Mapping System (AToMS) was launched
in June 2011.

Here we introduce CAO-2 AToMS, providing details on its specifi-
cations and performance levels. We then quantitatively analyze how
fusing instruments and their data streams increases the dimensional-
ity of the ecological information derived from remote sensing. The
term data fusion refers the combining of sensory data from disparate
sources such that the result expresses more information than is be
possible when the data sources are used individually. We also use
the term co-alignment to indicate a subset of the data fusion processes
involving aligning of image pixels and LiDAR laser spots. Overall, the
instrumentation and methods presented here serve as a pathfinder
for macroscale ecological applications undertaken by other organiza-
tions. In particular, results and techniques derived by the CAO pro-
gram support the goals and plans of National Ecological Observatory
Network (NEON) and other agencies (Kampe et al., 2011).

2. CAO-2 AToMS

AToMS is comprised of three major sensors and their associated
onboard control and computing systems: (i) visible-to-shortwave in-
frared (VSWIR) imaging spectrometer; (ii) waveform LiDAR; and
(iii) visible-to-near infrared (VNIR) imaging spectrometer (Fig. 1).
The VSWIR provides full-range (380–2510 nm) spectroscopic radi-
ance measurements with very high fidelity needed for canopy chem-
ical and physiological applications, as well as for geological and
atmospheric measurements. The LiDAR provides detailed three-
dimensional (3-D) data on vegetation structure, sub-canopy ground
surface elevation, and the 3-D structure of non-vegetated targets.
The VNIR spectrometer provides increased spatial detail, with 4 pixels
per VSWIR pixel, covering the 365–1052 nm range. High spatial reso-
lution is often needed to discern individual lifeforms and species.

The three instruments are aligned on a single reinforced steel
plate which floats on six hi-damp silicon pneumatic mounts for vibra-
tion dampening (Fig. 1). The mounts are not designed for active sta-
bilization control, but rather for providing a semi-rigid connection
between the instrument sensor heads and aircraft, while minimizing
vibration. The entire payload has a mass of approximately 850 kg.

2.1. VSWIR details

The VSWIR imaging spectrometer is a pushbroom linear array
based on the Offner spectrograph design (Prieto-Blanco et al., 2006),
and it is the cornerstone sensor within AToMS (Fig. 2). The CAO
VSWIR measures upwelling spectral radiance in 5-nm increments
(full-width at half-maximum) or 428 contiguous spectral bands
(Table 1). Because very high spatial and spectral uniformity is re-
quired to produce high-fidelity spectrometer data (Green, 1998;
Mouroulis et al., 2000), the VSWIR was designed and tested to ensure
greater than 95% cross-track spatial uniformity and spectral IFOV uni-
formity at all wavelengths. Thermal control of the VSWIR vacuum
chamber is critical to achieving the high levels of uniformity de-
scribed. To manage this, we utilize temperature controllers with Si
diode sensors at multiple control points within the thermal vacuum
enclosure. Temperatures are held to within 0.1°K at all points for an
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Fig. 2. Schematic of the cornerstone CAO instrument – the VSWIR spectrometer – showing the spectrometer body suspended by isolating struts in a thermally-regulated vacuum
chamber. The ray trace for incoming light is shown on the left in purple color, with a more detailed view on the right. The two devices at the top of the VSWIR instrument are electric
cryocoolers (CC).
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external environment temperature range of 0–45 °C, providing opti-
cal alignment to within 2% of a spectral band.

The signal-to-noise (SNR) performance of the VSWIR is shown in
Fig. 3. The reported SNR for the VSWIR benchmark radiances is de-
rived from measured laboratory signal and noise values from the
completed instrument. The CAO instrument is held in a vacuum
vessel at cryogenic temperatures to isolate the spectrometer from
pressure and temperature disturbances. With a 25% Lambertian re-
flectance target at 23.5° illumination zenith angle and a 0.01 s inte-
gration time, the VSWIR delivers arguably the highest performance
levels reported for an operational full-range imaging spectrometer.
For example, VSWIR SNR levels are two times higher in the visible
(400–700 nm) range than its predecessor Airborne Visible and
Infrared Imaging Spectrometer (AVIRIS). Moreover, VSWIR SNR is
300–500% higher than AVIRIS in the shortwave-infrared (1300–
2510 nm), depending upon wavelength (see Green et al., 1998). The
extremely high SNR and uniformity is required to meet CAO goals of
mapping vegetation canopy chemistry, physiology and composition
(Asner et al., 2007, 2011). In particular, it is important for resolving
atmospheric water vapor and aerosol in the spectrum, so that these
and other constituents can be modeled and accounted for while
deriving apparent surface reflectance upon which vegetation and
ecosystem mapping analyses depend (Green, 1998; Green et al.,
1998, 2005).

Pushbroom spectrometers, particularly full-range instruments, are
notorious for spectral and spatial non-uniformity across the detector
array (Mouroulis & Green, 2003). To reach the high levels of uniformi-
ty required for macroscale ecological applications, we integrated an
on-board calibrator (OBC) into the VSWIR spectrometer to allow
ultra-fine tuning of the image radiometric calibration during flight.
The OBC is a highly stable, feedback-controlled, color-balanced halo-
gen lamp in a parabolic reflector providing a collimated beam into
an off-axis parabolic mirror, which focuses the light down to a tight
bundle. When a shutter in the focused beam is opened, light is trans-
mitted into a fiber optic bundle comprised of approximately 350 low-
OH 200 μm fibers, which conducts the light from the OBC source mod-
ule outside the thermal-vacuum enclosure through a hermetically
sealed portion of the fiber length, then through the inner thermal
shields and down to a highly reflective target immediately in front of
the spectrometer slit. The target has highly repeatable positioning and
is coated with space-grade white paint that has no absorption features
over the 380–2510 nm spectral range. This paint, APTEK Laboratories
95395, has aluminum oxide powder as pigment in a KASIL 2135 potas-
sium silicate binder formulated specifically for higher reflectance in the
blue end of the spectrum compared to other inorganicwhite paints. The
actuated painted target in front of the spectrometer slit is illuminated
by the OBC light immediately following the collection of each data flight
line. This allows measurement of and compensation for any small
changes in the spectrometer light response across the spectrum and
across the full 34° field-of-view of the sensor. Stability has been demon-
strated in the lab at the 0.1% level (Coles et al., 2011). TheOBCfiber optic
bundle also includes three fibers that allow a helium–neon laser to send
532.8 nm light onto the white target in front of the slit to confirm the
spectral calibration of the spectrometer.

2.2. LiDAR details

The CAO-2 LiDAR is a dual-laser scanning system operating at
1064 nm (Table 1, Fig. 1). The LiDAR collects the full waveform and up
to four discrete returns per laser shot. The effective pulse repetition
rate is adjustable from 100 to 400 kHz in increments of 100. The scan
frequency and angle can be adjusted independently to achieve desired
spot spacing with maximums of 140 Hz and 65°, respectively. The
waveform amplitude data are digitized at 8-bit and discrete return in-
tensity data are digitized with 12-bit dynamic range. Laser beam diver-
gences are 0.5 mrad (1/e) resulting in a 50 cm footprint at 1000 m
above ground level (AGL). Horizontal accuracy is a function of height
(Table 1),with a one-sigma uncertainty of 18 cmat 1000 mAGL. The el-
evation uncertainty is less than 15 cm at one-sigma.

2.3. VNIR details

The VNIR imaging spectrometer is based on the CASI-1500 design
(Babey & Anger, 1989) with major customizations for higher data



Table 1
CAO AToMS performance specifications including its visible-to-shortwave infrared
(VSWIR) and visible-to-near infrared (VNIR) imaging spectrometers, and waveform
light detection and ranging (LiDAR) scanner.

Component Description

VSWIR Type: pushbroom array, diffraction grating, Offner design
Detector: HgCdTe
Spectral range: 380–2510 nm
Spectral resolution: 5 nm
Spatial pixels: 600; 34° field-of-view
Instantaneous field-of-view: 1.0 mrad
14-bit dynamic range
Min. to max. radiance level: 0.0–70.0 mW cm−2 nm−1 sr−1

Radiometric stability≤2%
Spatial uniformity: 95%
Spectral uniformity: 97%
SNR: see Fig. 3

LiDAR Dual laser: one at nadir and one at 2.4° forward of nadir
Wavelength=1064 nm
Full waveform digitization, 1 ns resolution
Pulse repetition rate: 400 kHz max.
Scan frequency: 140 Hz max.
Scan angle: 65° max.
12-bit dynamic range
Beam divergence: 0.5 mrad (1/e)
Horizontal accuracy: 1/5500×altitude (1 sigma)
Elevation uncertainty: b15 cm (1 sigma)

VNIR Type: pushbroom array, diffraction grating, Offner design
Detector: Si
Spectral range: 365–1052 nm
Spectral resolution: adjustable 2.4 nm to 19.2 nm in 2.4 nm
increments
Spatial pixels: 1480; 40° field-of-view
Instantaneous field-of-view: 0.5 mrad
14-bit dynamic range
Min. to max. radiance level: 0.0–60.0 mW cm−2 nm−1 sr−1

Radiometric stability≤2%
Spatial uniformity: 96%
Spectral uniformity: 94%
SNR at nadir=410 @ 550 nm on 25% reflectance target
SNR at nadir=830 @ 850 nm on 25% reflectance target
Downwelling irradiance sensor (350–2500 nm; 2.0 nm sampling)

IMU 200 Hz high-performance FOG gyros; silicon accelerometers
Performance: velocity=0.005 m/s; roll and pitch=0.005°;
heading=0.008°

GNSS L1/L2 compatible; 43 dB
72 channel dual frequency; 20 Hz raw data rate

Sensor
mount

Floating-plate design with six hi-damp Si pneumatic mounts for vi-
bration dampening

Pilot
controls

Navigation display controlled by instrument operator from rear of
aircraft
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Fig. 3. Spectral signal-to-noise performance of the CAO VSWIR spectrometer at three
different target reflectance levels: 5% (45° illumination zenith angle), 25% (23.5°),
and 50% (23.5°). The results are based on a 0.01 s integration time using a laboratory
calibration illumination source. For reference, the SNR is up to five times higher in
the CAO VSWIR than in the Airborne Visible and Near-infrared Imaging Spectrometer
(AVIRIS; Green et al., 1998).
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rate, stability and signal-to-noise performance. The system has 1480
track-track elements spanning a 40° field-of-view (Table 1, Fig. 1).
The instantaneous FOV is 0.5 mrad. The derived spectra have an ad-
justable number of spectral bands of up to 288 for a fixed wavelength
range of 365–1052 nm. The VNIR readout provides ultra-fast data
rates of up to 330 frames s−1. Anti-reflective coatings and a detector
cooling sub-system result in SNR levels of up to 1800 in the near-
infrared spectrum on a 25% reflectance target and 0.01 s integration
time.

3. Instrument and data fusion

AToMS is designed to serve a multi-dimensional data collection,
processing and modeling stream (Fig. 4). Data from each instrument
are integrated using a combination of hardware- and software-
based fusion techniques. The co-alignment of the CAO data relies on
the known relative position and orientation of the sensors within
the aircraft. Sensor positioning information is acquired via post-
processed differential correction between an airborne 220 channel
Global Navigation Satellite System (GNSS) and ground based reference
stations. Sensor orientation is measured with an inertial measurement
unit (IMU) collecting three dimensional angular accelerations at
200 Hz. The position and orientation of each sensor is calculated at
each frame step using a tightly coupled model combining GNSS and ac-
celeration data to produce a smooth best estimate of trajectory (SBET)
with accuracies better than 10 cm and 0.008°. The two spectrometers
utilize the same SBET as the LiDAR to determine the location of every
pixel in each image. To locate each pixel, the spectrometers and LiDAR
must be synchronized with the times in the SBET. This is accomplished
by reading a pulse-per-second signal from the GNSS, which is then
time-stamped to each frame in the image data streams from both
spectrometers.

To derive the most precise instrument fusion possible, it is neces-
sary to create a three-dimensional camera model for each spectrom-
eter. Each camera model takes into account the optical properties of
the lens through which the light travels, the location of the pupil of
the lens relative to the SBET referenced location, as well as small an-
gular offsets due to slight differences in mounting the spectrometers.
The field data needed to create the camera models include a series of
known locations (map coordinates and pixel/line coordinates) of fea-
tures observed in the LiDAR and spectral data (Fig. 5). Traditionally,
this is accomplished by manually selecting ground control points
and tie points (pixel/line coordinates) between various flight lines.
However, because the LiDAR data are already very precisely geo-
located by the SBET solution, the intensity data from the LiDAR points
is used to produce an image at the wavelength of the laser (1064 nm),
which can then be precisely matched to the same wavelength image
in the spectrometers (Bay et al., 2008) (Fig. 6). Using coordinates of
the correlated features found in all three data sets, the camera
model parameters are computed to produce a precise final fit be-
tween data streams (≪1 pixel RMSE).

We achieve both high accuracy and high precision in the co-
registration and ray tracing process by employing a cross-sensor opti-
mization scheme that uses spectrometer tie points and spectrometer-
to-LiDAR-intensity virtual control points. Leveraging its spatial high ac-
curacy and self-consistency, we modify the LiDAR intensity images to
mimic a passive reflectance image by imposing shading and cast
shadows. Automatic control points are generated to match image fea-
tures in the LiDAR intensity and spectrometer imagery. Likewise we
generate automatic tie points that link the significant overlap of spec-
trometer flight lines. We typically produce tens of thousands of these
tie and control points per camera calibration experiment, and the points
are divided up to provide calibration and independent validation.



Fig. 4. Multi-dimensional information flow from raw data collected onboard the CAO (top section), to processed science data outputs (middle section), to scientific results derived
through analysis and modeling.
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By designing the calibration flight lines to have crossing fields-of-
view, from different altitudes and different flight directions, we solve
the model to optimize the absolute accuracy of the result by separat-
ing the effects of correlated variables such as pitch and timing, and
field of view and altitude. The spectrometer camera calibrations are
an eleven parameter model that accommodates the curved projection
of the spectrometer slits and the sensor-to-body angles between the
navigation frame and the optical axes of each instrument. We have
shown that this self-calibration procedure is very sensitive and a
good result virtually guarantees both accuracy and precision in the
final camera models and resulting pixel locations. By combining all
the data, we have developed an approach that is self-calibrating and
self-validating for regions areas with overlapping flight lines. Any
off-nominal performance, by the LiDAR or the spectrometers is re-
vealed in the form of a failure of the model to converge to an accept-
able residual.

4. Science data flow

Following data fusion, which can result in 504–1204 bands of raw
data depending upon VNIR andwaveform LiDAR settings, the measure-
ments are analyzed to science results using a variety of techniques
(Fig. 4). Our purpose here is to briefly highlight the analytical options
made available through high-fidelity measurements with precision
data fusion, and to provide related references. First, high-fidelity spec-
troscopic data allow for quantitative atmospheric correction of the
spectra (Gao et al., 1993; Reinersman & Carder, 1995; Roberts et al.,
1997): By combining high-SNR, contiguous narrowband spectra with
precise geometric information from the SBET data, we develop reflec-
tance spectra that minimize effects of aerosol, water vapor, and other
atmospheric constituents (Gao & Goetz, 1990; Green & Pavri, 2002;
Green et al., 1998, 2005; Schlaepfer et al., 1996). Second, automated
and semi-automated techniques can be applied to spectroscopic data
to derive a wide variety of ecological and geophysical properties (blue
box, Fig. 4). Examples include chemometric analyses for soil and rock
mineralogy (Clark et al., 2003; Swayze et al., 2000), spectral unmixing
and classification of vegetation cover, live and deadmaterial, functional
types, and composition (Asner & Lobell, 2000; Bohlman, 2008; Clark et
al., 2005; Kalacska et al., 2007; Roberts et al., 1998; Somers et al., 2011),
and retrievals of canopy chemicals including photosynthetic pigments,
nutrients and defense compounds (e.g., Knox et al., 2011; Kokaly et
al., 2009; Martin et al., 2008; Ustin et al., 2009). In parallel to spectral
analyses, LiDAR can be used to map vegetation biomass from the
three-dimensional data provided on canopy height and structure
(Harding et al., 2001; Lefsky et al., 2002; Mascaro et al., 2011). LiDAR
data can also be used to model topography and to identify tree crowns
and other objects in the imagery (Clark et al., 2004; Lee & Lucas, 2007;
Müller & Brandl, 2009).

With an integrated use of LiDAR and spectral measurements, the in-
terpretation of both data types can be greatly improved (Dalponte et al.,
2008; Mundt et al., 2006), thereby enhancingmulti-dimensional analy-
ses of ecosystems. For example, biological diversity is detectable down



5 km

Fig. 5. A typical smoothed best estimate of trajectory (SBET) for a CAO mapping flight over the Republic of Panamá in January 2012. The precise location (latitude, longitude, and
altitude) and orientation (roll, pitch, and yaw) of the focal points in each AToMS sensor is displayed as a continuous red line. Lines appearing close together indicate areas of in-
tensive mapping activity.
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to organismic levels using a combination of spectral and LiDAR mea-
surements that express the functional and structural traits of lifeforms
and species (Asner et al., 2008; Blackburn, 2002; Hill & Thomson,
2005; Mundt et al., 2006; Ustin & Gamon, 2010). Vegetation habitat,
Lidar Intensity       VNIR Im

Fig. 6. A single point example from the CAO automated, inter-instrument tie-point selectio
three dimensions. All images are tied at 1064 nm. This approach yields camera model para
geo-orthorectified imagery fused with the LiDAR-derived surface digital elevation model.
upon which the entire web of life depends, can be more deeply probed
with fused spectral and LiDAR observations that express spatial varia-
tion in functional and structural plant characteristics (Boelman et al.,
2007; Clark et al., 2011). By combining spectroscopically-derived
age                     VSWIR Image

10 m

n algorithm, which produces thousands of tie-points to solve for geometric offsets in
meters for the VSWIR and VNIR spectrometers, resulting in digitally bore-site aligned

image of Fig.�5
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vegetation traits to estimate plant physiological processes (Doughty et
al., 2011; Gamon et al., 1992), along with topography and structure
from LiDAR observations, it is possible to develop spatially explicit in-
formation on hydrological flow and water quality (French, 2003). As
demonstrated in the examples above, the science community is begin-
ning to use these integratedmeasurement approaches, and the demand
for the multi-dimensional information will continue to increase.

5. Science data dimensionality

The potential value of combining high-fidelity spectrometer and
LiDAR measurements needs to be considered with respect to the po-
tential gain in data dimensionality. The inherent dimensionality of
fused data streams is dependent upon the orthogonality (or unique-
ness) of the measurements, their noise levels, the accuracy of data
co-alignment, and the composition of the imaged landscape. Here
we use the fully integrated AToMS data stream – including VSWIR,
LiDAR and VNIR sensors – to assess the inherent data dimensionality
of two contrasting environments (Fig. 7). One example data set of
about 100 ha was collected in June 2011 over Stanford University in
California USA, which is comprised of a mosaic of vegetation types
(grasses, shrubs, trees, and palms), buildings with an array roofing
materials, pavements, and exposed soils. Another 300 ha example
was collected in July 2011 over a lowland humid tropical forest at
the Los Amigos conservation concession in the Peruvian Amazon; it
is comprised of a high diversity of tree, liana and other plant species
(Phillips et al., 2009). The data sets are each comprised of VSWIR
spectral reflectance signatures in 5-nm increments from 380 to
2510 nm, LiDAR data processed to vegetation height, topography,
and vertical canopy profiles (see Asner et al., 2007), and VNIR spectral
reflectance data in 10-nm increments from 370 to 1050 nm. The data
were processed to match the ground sampling distance of the VSWIR
sensor for each data set: 1 m for Stanford and 2 m for the Peruvian
Amazon.

Principal components analysis (PCA) was used to estimate the di-
mensionality of the Stanford and Amazon data sets (Fig. 8). PCA con-
verts a group of potentially correlated observations into a set of
uncorrelated variables, or PCs. The first PC accounts for as much of
the variability in the data set as possible, and each subsequent PC,
in turn, captures the greatest variance possible under the constraint
that it be orthogonal or uncorrelated with the preceding PCs. With re-
motely sensed imagery, it remains a challenge to quantitatively assess
the number of significant PCs within a data set. Most practitioners
compute a PCA, and then manually review each resulting PC band
to seek recognizable spatial information, thereby discarding bands
comprised of or dominated by noise. Here we manually reviewed
the results of PCA using different combinations of measurements
(VSWIR, LiDAR, and VNIR), with the criterion being that any PC
band with features recognizable in the original imagery (e.g., build-
ings, tree crowns) would be counted as an additional degree of free-
dom in the data set. PC bands dominated by random noise were
excluded from the count (Fig. 8). Although this approach may intro-
duce some user bias, we limit our interpretation of it as a relative
index comparing different sensor combinations.

With only the LiDAR data, there are 33 and 62 significant PCs, or
spatial degrees of freedom, in the Stanford and Amazon cases, respec-
tively (Fig. 9). By close inspection of the LiDAR data, we determined
that the boosted dimensionality in Amazonia is due to the complex
canopy tree structures found in the LiDAR vertical profiles. There is
much lower dimensionality in the Stanford image caused by buildings
acting as impervious surfaces to laser energy. We observe the oppo-
site for VNIR data, which provides 64 and 37 significant PCs in the
Stanford and Amazon cases, respectively. This is likely caused by the
highly diverse mix of materials (e.g. chemicals) in natural and
human-built surfaces found in the Stanford imagery. In contrast, Am-
azonian plant canopies show somewhat reduced data dimensionality
in visible and near-infrared wavelengths. This results from consis-
tently strong absorption by photosynthetic pigments, and strong
scattering associated with high leaf area index, in tropical canopies,
which together dominate the VNIR wavelength range. Combining
LiDAR and VNIR sensors leads to a near linear increase in data dimen-
sionality beyond what was provided by each sensor individually
(Fig. 9). This result demonstrates the orthogonal and complementary
nature of the two types of measurements: LiDAR is sensitive to struc-
ture, whereas VNIR is sensitive to chemistry and composition.

After removing the water vapor regions of the original 428 contig-
uous channels (380–2510 nm range), the remaining 335 channels of
VSWIR measurements boost the data dimensionality by 400% over
that obtained when using VNIR (370–1050 nm) measurements
alone (Fig. 9). The percentage increase is consistent in both the
Stanford and Amazon cases. However, in the Stanford case, adding
shortwave-infrared data (1100–2510 nm) provides nearly 200 addi-
tional degrees of freedom in the spectral observation suite, while
the Amazon case contains about 100 additional PCs. Independent of
image composition, this result highlights the value of collecting data
in the shortwave-infrared range (sensu Asner & Lobell, 2000;
Ceccato et al., 2001; Drake et al., 1999). Adding LiDAR observations
to the VSWIR data results in a 12% increase data dimensionality in
the Stanford case, and 41% in the Amazon case. Again, the boosted in-
formation content of LiDAR data in the forested scene is due to the
porous, highly diverse structural composition of the rainforest
canopy.

Combining all three sensor data streams into a single measure-
ment suite yields the highest data dimensionality among the PCA
analyses (Fig. 9). In the Stanford case, a 336-dimension data set is
achieved. In the Amazon case, 218 dimensions are identifiable — like-
ly the highest levels of data dimensionality reported for a forested
ecosystem. The extremely high fidelity of the three-sensor data
stream is expressed in PC composite images such as in Fig. 10,
which shows the influence of diverse compositional and structural in-
formation embedded in the measurement suite. The Amazon case is
particularly interesting because these forests are among the most bi-
ologically diverse in the world (Condit et al., 2005), yet their function-
al and structural variation remains largely unknown to science. The
functional characteristics of forest canopies are captured in spectrom-
eter measurements mostly by way of foliar chemistry, as well as in
the amount and orientation of the leaves (Ollinger, 2011), while can-
opy structure is captured by LiDAR measurements sensitive to varia-
tion in canopy height, crown shape, and the vertical layering of
plant tissues from the canopy top to the ground below. Our results
strongly suggest that even a small landscape of 300 ha shown here
contains an enormously diverse composition that has not been ob-
served until high-fidelity, multi-sensor data fusion was applied here.

The boosted information content gleaned by integrating seeming-
ly redundant VSWIR and VNIR data streams occurs because each in-
strument samples at different wavelength intervals and nominal
ground sampling distances. Moreover, noise – which reduces data di-
mensionality – is distributed unevenly across each sensor's detector
array, both spatially and spectrally, and the noise is not coherent be-
tween sensors. By acquiring combined measurements from sensors
with inherent differences in spatial and spectral resolution, sampling,
and noise distributions, the data dimensionality increases 5–17%
when adding the VNIR to the VSWIR–LiDAR combination (Fig. 9).

6. Sensitivity to sensor misalignment

While there is strong scientific value in developing fully integrat-
ed, high-fidelity observations, there persists a danger of over-
estimating its potential if the data co-alignment is not accomplished
with high precision. For example, it is common practice to compile
imaging data from multiple sensors flown on separate aircraft, often
with incompatible designs or settings. While average RMS errors for



(a)

(b)

VSWIR RGB          LiDAR Height              VNIR CIR                 LiDAR 10 m

VSWIR RGB              LiDAR Height                VNIR CIR                  LiDAR 10 m
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Fig. 7. Example CAO AToMS data sets for (a) 100 ha of Stanford University and (b) 300 ha of lowland Amazonian forest indicate the tight co-alignment of the data stream, from left
to right: VSWIR true-color composite, LiDAR height above ground, VNIR color-infrared composite, and LiDAR vertical profile slice at 10 m aboveground.
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data fusion are often reported to be ±1–2 pixels, this metric does not
report the full range of misalignment errors that often exists within
and between datasets, known as non-linear or “rubbersheet” spatial
errors. Using PCA, we quantified our sensitivity to misalignment
between VSWIR, LiDAR and VNIR sensors to ascertain the extent to
which data dimensionality might be reduced. We resampled each
sensor data set using a separate set of GCPs to which normal random
error was introduced with a mean of zero and standard deviation of



PC-1                     PC-30                  PC-150                 PC-450

0.1  km

Fig. 8. Principal component (PC) bands of a PC analysis conducted on the full three-sensor CAO AToMS instrument suite over Stanford University. Notice the high dimensionality of
the data, expressed in the clearly visible objects (buildings, vegetation, etc.) in PCs 1, 30 and 150. Noise dominates in PC band 450, for comparison.
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3.0 in order to approximate an RMS of 3 pixels in both the X and Y di-
rections. A different set of random errors was generated to produce a
different misalignment for each data set (VSWIR, VNIR, and LiDAR).

The results show that even small misalignments degrade the data
dimensionality (Fig. 11). In the Amazon case, misalignment between
VNIR and LiDAR, or between VSWIR and LiDAR, reduces the informa-
tion by 30–48%. Errors in the Stanford case are lower – 7% to 24%
depending upon sensor combination – because the objects in the
scene such as buildings, roads and parking lots are much larger than
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Fig. 9. The number of spatially significant principal components (PC), or degrees of
freedom, in CAO AToMS imagery collected over Stanford University and lowland Ama-
zonian forest (see Fig. 7). Repeated PC analysis was done on precisely co-aligned LiDAR,
VNIR, and VSWIR data, as well as combinations of data from these three sensor sub-
systems.
the tree crowns found in the Amazon. Analyses of co-aligned imagery
containing large, homogeneous features are less prone to noise intro-
duced by inter-sensor misalignments. Some of the negative impact is
also diminished here by use of the full three-sensor AToMS configura-
tion simply by increasing the likelihood that two out of three instru-
ments, each providing many degrees of analytical freedom, are
aligned in any given portion of the field of view. Note that this is a
very conservative test; data misalignments can be expressed in
more insidious forms, such as when non-random misalignments
occur from errors in navigation data streams or camera models.

7. Conclusions

As the scientific community pushes to understand changes in the
composition of our biosphere, there is increasing demand for large-
scale, spatially detailed observations that simultaneously provide
data on multiple ecological properties. Without such multi-
dimensional observations, a change in an unobserved ecological
trait (e.g., canopy architecture) could impart a change in one that is
observed (e.g., photosynthetic light absorption). Yet the unique role
of either trait may differentially explain an underlying control and
or a relationship regulating a process of interest, such as carbon and
water fluxes, or habitat and biodiversity change. The simultaneity of
the observations is therefore requisite to attributing cause and effect
among the potential ecological drivers of and responses to environ-
mental change.

More broadly, the use of spatially fused and diverse physical mea-
surements could have a very positive effect on ecological research in
coming decades.Modern ecology has grappledwith resolving processes
at the most appropriate spatial scales; the airborne perspective and in-
strument payloads such as the CAO AToMS will continue to transform
our measurement capabilities from localized plot to regional levels.
Through these approaches, new ecological understanding is already
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Fig. 10. Composite images for (a) Stanford University and (b) lowland Amazonia of principal components analysis (PCA) bands 2, 3 and 4 representing compositional and structural
diversity observed with CAO AToMS.
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emerging at themacroscale, and with fine biological resolution. As a re-
sult, the observations will continue to facilitate discoveries that have
eluded ecology, while also improving the conservation and policy rele-
vance of scientific studies. One persisting challenge is that airborne
measurements lack a certain multi-temporal feasibility due to cost
and logistics. Aircraft cannot cover all geographies on a frequent basis,
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Fig. 11. Percentage decrease in data dimensionality or number of spatially significant
principal components caused by instrument data misalignment during fusion. These
errors are scene-dependent, and should not be treated as absolute values.
so more work is needed to develop approaches which use satellite ob-
servations to inform the types of tactical mapping measurements pro-
vided by airborne remote sensing (Asner, 2009).

Here we have demonstrated that fully-integrated, macroscale eco-
logical observations are technologically and scientifically possible,
thereby greatly increasing the data dimensionality needed for new sci-
entific analyses. Reports of 200 or more degrees of freedom in a single,
geographically limited data set are rare. To our knowledge, this is the
highest dimensionality of remotely sensed data reported in ecology.
However, we also highlighted the losses incurred when the data stream
suffers frommisalignment (or non-uniformity) among the sensors con-
tributing to the suite of observations. The instrumentation andmethods
described here provide a guide for those planning to develop and deploy
fused sensor packages, as clearly the potential gains for environmental
remote sensing are very large.
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