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Abstract

Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms
such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid
carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional
and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been
employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light
Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal
area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual
modeling by including—in the latter case—x, and y position directly in the model. In each case, we set aside 8 million
hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal
validation normally compiled by the algorithm (i.e., called ‘‘out-of-bag’’), which proved insufficient for this spatial
application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of
Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for
stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE
against validation LiDAR samples improved from 33 to 26 Mg C ha21 when using Random Forest with spatial context. Our
results suggest that spatial context should be considered when using Random Forest, and that doing so may result in
substantially improved carbon stock modeling for purposes of climate change mitigation.
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Introduction

Machine learning algorithms are increasingly being applied in

image analysis problems ranging from face recognition [1] to self-

driving vehicles [2]. Recently, the Random Forest algorithm [3],

has been used in global tropical forest carbon mapping [4].

However, there is considerable resistance to the use of machine

learning algorithms in ecological applications, as the discipline has

been the purview of traditional parametric statistics for decades

[5,6]. The cause for concern is genuine: Random Forest has not

often been applied to spatial mapping applications, and there has

been limited evaluation of its performance in such applications

relative to alternative and more traditional methods. Here we

present a side-by-side comparison of Random Forest-based carbon

mapping predictions relative to the reliable and often-used

approach of stratification-based sampling [7].

The problem of tropical forest carbon mapping continues to

challenge ecologists and remote sensing experts. In practice,

measuring the amount of carbon stored in a patch of forest is

straightforward, if logistically challenging. Plant biomass may be

harvested, dried and weighed [8], and from this material the

carbon fraction determined [9]. However, it is easy to see that such

efforts would be futile for determining spatially explicit carbon

stock estimates at larger scales. Traditional field campaigns utilize

national forest inventory networks—grids of field plots within

which tree diameters, heights and wood densities are measured,

and allometric models to relate such measurements to estimated

carbon stock per tree [10]. But while such networks may be

sufficient for estimating total carbon stock in a habitat type,

ecoregion or jurisdiction, they are inadequate for estimating

spatially explicit carbon stocks. Even immediately adjacent to a

particular field plot, an investigator or landowner has much lower

predictive power to estimate carbon stock compared to their

ability to predict regional totals. Yet, such spatially-explicit carbon

estimates are essential for many ecological applications as well as

for carbon emissions programs such as the United Nations’

Reduced Emissions from Deforestation and Forest Degradation

(REDD+) effort [11].

Remote sensing technologies—and particularly LiDAR (Light

Detection and Ranging)—have been used to estimate spatial

variation in carbon stocks [4,12–16]. Whether from airborne or

spaceborne platforms, laser scanning technologies can measure

aspects of forest structure that are similar to those measured in

field plots. For instance, tree height is determined often more
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accurately with LiDAR than from the ground via traditional

techniques such as clinometer trigonometry, particularly in dense,

tall-statured tropical forests. Still, while LiDAR measurements

offer a possible spatial mapping tool for carbon estimates, they too

reach a geographic limit due to cost and logistical considerations

[17]. Aircraft cannot yet cover all the world’s tropical forests, and

spacecraft are limited to a net-like sampling scheme [4,15]. Thus,

additional data from satellite inputs, such as Landsat, Shuttle

Radar Topography Mission (SRTM), Tropical Rainfall Mapping

Mission (TRMM), Moderate Resolution Imaging System

(MODIS) and other sources are used to scale up LiDAR-based

carbon estimates [17].

Various regional, jurisdictional and global tropical forest carbon

mapping approaches that have utilized LiDAR measurements as

the principal carbon estimator have employed several different

techniques to extend or scale up their LiDAR-based carbon

estimates [4,7,14,15,17–20]. Stratification is most often employed

[7]; this method involves identifying unique classes often with a

vegetation map [18], or by isolating unique combinations of input

variables into distinct classes similar to a vegetation map [17,20].

Random Forest has been used in few carbon (or biomass) mapping

efforts to date [4,16,21]. Random Forest is a machine-learning

algorithm that fits multiple decision trees to input data using a

random subset of the input variables for each tree constructed; the

mode of these trees is used to create an ‘‘ensemble’’ tree that is

used for prediction. Random Forest has a large potential upside: it

is non-parametric, insensitive to data skew, robust to a high

number of variable inputs, and the algorithm purportedly

‘‘cannot’’ overfit [5]. However, these purported benefits—partic-

ularly the lack of overfit—have not been tested using spatial data.

Ecological applications of Random Forest are increasing [22,23],

but skepticism about the method remains.

Here we evaluate the performance of Random Forest as a

spatial upscaling tool for LiDAR-based carbon sampling, and we

compare its performance to the more traditional stratification

approach. We utilize a focal study area of 16 million hectares of

tropical forest, swamp, and used lands within the Marañon and

Ucayali watersheds in Northern Peru. The area harbors enormous

ecological heterogeneity, including lowland terra firme and flood-

plain forests, swamps, marshes, mid- and high-elevation forests,

and heavily utilized lands within each of these habitat types,

including pasture, mining, oil extraction and selective logging.

Methods

Study area
The focal area for this study is a 16 million ha region spanning

from a SW corner of 77.557u West Longitude 6.962u South

Latitude to a NE corner of 73.942 West Longitude 3.349u South

Latitude (Figure 1). The focal area covers an ecoregion of

enormous biophysical and floristic variation, and is among the

most biologically diverse regions in Amazonia [24]. Ground

elevations range from 90 m a.s.l. in the eastern section of the focal

area to 3884 m in the southwestern portion. The area is dissected

by a series of rivers draining into the upper Amazon, including the

Nanay, Tigre, Marañon, Pacaya, Samiria, and Ucayali rivers. The

Pacaya-Samiria National Reserve found near the center of the

focal area is a swampland covering more than 20,000 km2. To the

east of the swamp, upland and rolling terra firme soils extending

towards Brazil contain very high biomass stocks, and to the west of

the swamp, the Pastaza Fan, Nauta and Pebas formations harbor a

wide array of forest compositions and structures [25–27].

LiDAR data
The LiDAR data were collected using the Carnegie Airborne

Observatory (CAO) Airborne Taxonomic Mapping System

(AToMS) [28]. The AToMS scanning LiDAR sensor is full

waveform, but the work presented here relied only on the discrete

return data of up to four returns per pulse in order to make the

results applicable to a much wider range of LiDARs currently in

operation throughout the world [29]. AToMS LiDAR was

operated at 2,000 m above ground level with 1.12 m spot spacing,

a 30u field of view, and a pulse repetition frequency of 50 kHz, for

which the aircraft maintained a ground speed of #110 knots.

Laser beam divergence is customized to 0.56 mrad (1/e).

Although carbon estimation can be accomplished with many

LiDAR metrics, we relied on a simple metric of ‘‘top-of-canopy

height’’ (TCH) for this study. TCH, estimated in m, is determined

in two steps: (1) ground and surface models are generated from the

1.12 m discrete return 3-D LiDAR point cloud data collected by

CAO, (2) the ground model is subtracted from the surface model

to produce TCH.

Carbon estimation
The focus of this study was to quantitatively compare two

approaches—stratification and Random Forest—for scaling up

airborne LiDAR-based estimates of forest carbon density to larger

regional areas beyond the LiDAR coverage. For purposes of

carbon mapping, the field calibration to LiDAR data is also

critically important, but we did not evaluate it in this study. Asner

and Mascaro [30] present a database of carbon calibration plots,

and from these we subset 214 plots for Peruvian forests (ranging

from 0.28 ha to 1.0 ha in size). The following equation was

determined using maximum likelihood: ACD = 0.3124TCH1.854,

where TCH is the top of canopy height (m), and ACD is

Figure 1. Fractional cover of photosynthetic vegetation (PV;
green), non-photosynthetic vegetation (NPV; blue), and bare
substrate (S; red) of our focal study region in Northern Peru.
The inset shows the location of the focal area within Peru. The region
spans 16 million ha of ecological heterogeneity within the Marañon and
Ucayali Watersheds. For carbon modeling purposes, airborne LiDAR
data from CAO were divided using a checkerboard configuration, with
694,243 ha of calibration data (white) and 669,943 ha of validation data
(black).
doi:10.1371/journal.pone.0085993.g001
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aboveground carbon density of all stems $10 cm in diameter (Mg

C ha21). This equation yields an R2 of 0.84 and RMSE of 26 Mg

C ha21 (see also [29]). The units of carbon estimated by this

equation should be viewed for the purposes of this study as a

consistent and reasonable output upon which to base the upscaling

analyses for the region. Importantly, we emphasize that the

present study is very unlikely to be influenced by the LiDAR

calibration model used; Random Forest is a non-parametric

algorithm, and any changes to the LiDAR-ACD calibration model

would have a minimal impact on the magnitude of the ACD

values and an even lower impact on the spread of those values.

Large-area data inputs
An overview of each large-scale input variables is provided in

Table 1 and described in detail here; see also Figures 1, 2. Each

data layer was prepared for Peru in its entirety, from which the

focal area was subset.

First, we mosaicked ten 90-m resolution Shuttle Radar

Topography Mission (SRTM) tiles [31] to produce a baseline

elevation map of the focal area in Peru (Figure 2). The original

data were resampled to 100-m resolution using pixel averaging,

and from these data we produced topographic models of slope and

aspect using a 363 sliding kernel (i.e., the slope or aspect of the

center pixel is calculated based on the elevations of all 9 pixels in

the local environment of the center pixel).

Second, we processed 1071 Landsat 5 and Landsat 7 scenes

(SLC off) taken in 2011 using Carnegie Landsat Analysis System

lite (CLASlite). CLASlite automates radiometric correction and

uses Monte Carlo Unmixing (MCU) to produce estimates of the

percentage cover of soil, photosynthetic vegetation (PV), and non-

photosynthetic vegetation (NPV) in every image pixel [32]. We

used a pixel-selection algorithm (median Normalized Difference

Vegetation Index, NDVI) to produce a ‘‘best-pixel’’ 2011 mosaic

of 30 m-resolution MCU fractional cover. Due to persistent clouds

in several regions, especially mid- and high-elevation forests, the

resulting Landsat MCU mosaic lacked coverage for 2.4% of the

area. To plug these gaps, we mosaicked our Landsat fractional

cover mosaic overtop of 500-m MCU output from MODIS. In

this case, all MODIS fractional cover estimates were normalized

with co-occurring Landsat pixels prior to mosaicking.

Finally, we incorporated a 134-class habitat map to represent

geological and soil variation thought to regulate forest properties

in Amazonian Peru and nearby regions [25,26,27,33]. The base

input for this map was a national geological map for Peru to

provide information on geologic and edaphic patterns in the study

area [34]. Due to the importance of recent Quaternary fluvial

features that were not included in the base map, we supplemented

it with information from the NatureServe national vegetation map

[35]. Lastly, we manually edited the geological map to account for

recent findings on edaphic and floristic patterns in the region

[25,33].

Upscaling methodology
We aligned all layers of the input data and resampled to 1-ha

resolution using nearest neighbor resampling. We aligned corre-

sponding 1.12-m resolution CAO LiDAR TCH data and

determined average TCH in each 1-ha grid cell (follows [30]).

From the large extent of the input data, we performed all

upscaling on an area bounding the entire Marañon Watershed to

avoid edge effects for our focal area of 16 million hectares.

Stratification. We stratified the input variables (Figures 1–2)

according to quantiles. Our goal was to produce as many unique

(and useful) classes of habitat variation in order to map carbon

variation among these classes [7]; however, an inordinately high

number of breaks among the various input variables quickly results

in too high a number of classes; ideally most classes will maintain a

LiDAR sample of more than 100 ha or 1% [17,20], but in this

case sampling was very dense (overall 8.5% of the focal area). We

dispersed 20 bins non-randomly among our continuous input

variables (i.e., STRM elevation, slope and aspect; CLASlite MCU

soil, PV and NPV), based on the strength of those variables in

influencing carbon stocks (Table 2). In previous studies, for

Table 1. Variables used to support three alternative upscaling methods for LiDAR-estimated tropical forest carbon stocks in a 16
million ha focal region in Northern Peru.

Upscaling method

Input Variable Explanation Stratification Random Forest

Random Forest with
position
information

easting UTM X coordinate X

northing UTM Y coordinate X

diagx X coordinate after 45 degree clockwise image rotation X

diagy Y coordinate after 45 degree clockwise image rotation X

frac_soil Percent cover of soil as determined by Landsat image
processing with CLASlite (%)

X

frac_pv Percent cover of photosynthetic vegetation as determined
by Landsat image processing with CLASlite (%)

X X X

frac_npv Percent cover of non-photosynthetic vegeation as determined
by Landsat image processing with CLASlite (%)

X X X

elevation SRTM elevation above sea level (m) X X X

slope SRTM slope (degrees) X X X

aspect SRTM aspect (degrees) X X X

geoeco Habitat class as determined by synthetic integration of national
geological map, NatureServe and other sources

X X X

doi:10.1371/journal.pone.0085993.t001
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example, PV and elevation were found to be the primary

controlling variables on carbon stock variation in Amazonian

forests (follows [17]). We subsequently intersected all unique

variable combinations with the 134-class habitat map. The

resulting classified map contained 8,035 classes. We intersected

this class map with the CAO LiDAR data (for all of the Marañon

region and surrounding environs, to avoid edge effects) to estimate

median LiDAR-carbon content for each class; this median value

was then mapped onto all pixels within that class using the class

map.

Random Forest. We utilized the Random Forest algorithm

(as contained within the R package ‘‘randomForest’’ version 4.6–

7; R version 2.15.2 [36]) to produce a mapping prediction from

the same input data layers as used in stratification. Although the

Random Forest algorithm tested does include a built-in ‘‘out-of-

bag’’ validation scheme, the effectiveness of this internal metric has

not been tested with spatial data to our knowledge. Thus, to

rigorously test Random Forest, we limited the model input data to

a systematic subset based on a 50-km (on a side) grid cell (Figure 1).

This limitation required the model to predict across large

validation regions containing no input data. Combined, the focal

region contained 36 calibration cells and 36 validation cells,

providing a 50% leave out strategy—extremely conservative

compared to most spatial modeling techniques (see, e.g., [37]).

We considered two separate ‘‘runs’’ of Random Forest, each

using an identical set of 80,000 randomly selected input pixels

among the calibration cells, which was at the limit of our

computational resources. First, we produced a Random Forest

model based on the large-scale input variables alone. Second, we

produced a Random Forest model based on the input variables

plus an additional four ‘‘position’’ parameters: x and y coordinates,

combined with two diagonal coordinates (i.e., columns and rows

for the image stack running from NW-to-SE and SW-to-NE,

respectively). Position information can be critical in modeling

underlying geographic trends within ecological data [38,39], and is

now used in many examples of spatial modeling for purposes of

predicting ecological trends [40–42]. We did not include such

variables to imply any mechanistic control, but rather to serve the

applied goal of accurately predicting carbon stock variation. We

refer to this run of Random Forest throughout as that having

‘‘position information’’.

Model comparison and evaluation
We examined the resulting carbon maps side-by-side, first by

considering differences among the maps. We then assessed

performance by comparing the predicted ACD values within the

36 validation cells against LiDAR-observed ACD within those

same cells. We used a distance transform of the extent of CAO

calibration input data to determine whether the model perfor-

mances were affected by increasing distance from CAO sample

LiDAR data (Figure 3). The distance transform employed an

approximate Euclidian distance algorithm which reproduces

Euclidian distance effectively but is less computationally inten-

sive—specifically ‘‘morph distance’’ in IDL (see also [43]).

We also considered the spatial autocorrelation of each model’s

residuals using two approaches. First, we created omnidirectional

semivariograms (R package ‘‘geoR’’, version 1.7–3 [36]), which

depict the correlation of observations according to increasing

distance between those observations. Due to computational

limitations, we created semivariograms using a random subset of

15,000 residuals (i.e., consistent spatially across all three upscaling

approaches). Second, we applied Moran’s I, an index of spatial

autocorrelation (R package ‘‘ape’’, version 3.0–8 [36]); Moran’s I

ranges from 21 to 1, where positive values indicate clumping and

negative values indicate organized opposition (i.e., a chessboard

pattern). Due to computational limitations, we assessed Moran’s I

within a randomized subset of 5,000 observations (i.e., consistent

spatially across upscaling approaches).

Table 2. Bin ranges for input variables used to produce a
stratified map of the region over which carbon modeling was
performed (see methods).

Soil PV NPV Elevation Slope Aspect

[0, 5) [0, 85) [0, 6) [0, 136) [0, 1.5) [0, Inf)

[5, Inf) [85, 88) [6, 13) [136, 193) [1.5, Inf)

[88, 90) [13, Inf) [193, 443)

[90, 91) [443, Inf)

[91, 92)

[92, 93)

[93, 94)

[94, Inf)

Twenty total bands were dispersed non-randomly according to the strength of
each variable in predicting carbon stocks, which has been shown to be an
effective stratification method in previous studies (e.g., [17]). Thereafter, the
input variables were subset by quantiles to determine bin ranges for the bands.
These class combinations were subsequently intersected with a 134-class
habitat map as described in the methods, resulting in 8,035 unique classes
within the focal area of the present study. A hard bracket indicates values
‘‘greater than or equal to’’, while a parenthesis indicates values that are ‘‘less
than’’.
doi:10.1371/journal.pone.0085993.t002

Figure 2. In addition to the fractional cover map shown in
Figure 1, four additional maps were created as input to the
stratification and Random Forest models. (a) SRTM elevation
ranging from a low of 90 m a.s.l. (green) to a high of 3884 m a.s.l.
(yellow), (b) SRTM slope ranging from level inundated areas (light
purple) to steep cliffs and rock faces (yellow), (c) SRTM aspect ranging
from a bearing of zero degrees (black) to just under 360 degrees
(white), and (d) habitat type, with broad variation highlighted by
kaleidoscopic color. In addition, the second of two Random Forest
models included four axes of position information (see Methods).
doi:10.1371/journal.pone.0085993.g002
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Finally, we considered over-fitting by comparing the internal

‘‘out-of-bag’’ percent variation explained reported by the Random

Forest algorithm to the percent variation explained in the 36

validation cells left out of the model input data.

Results

Stratification and Random Forest (both with and without

position information) yielded predicted maps of ecosystem carbon

stock that highlighted enormous variation across the 16 million-

hectare focal area (Figure 4). The Pacaya-Samiria Swamp (center

and east of the region) was generally modeled as containing low

carbon stocks ranging from near 0 to ,50 Mg C ha21, but also

showing considerable heterogeneity throughout the swampland.

Upland terra firme forests were modeled consistently among the

three approaches, including in the NE, SE, and NW corners of the

focal area. However, several regions exhibited pronounced

differences when using Random Forest with position information

relative either to the other two approaches (Figure 5).

However, a clear benefit of using Random Forest with position

information emerged during statistical comparison of the ap-

proaches (Figure 6). As a baseline, stratification yielded a RMSE of

33.2 Mg C ha21 and adjusted r2 of 0.37 (predicted versus

observed). A modest improvement was detected with Random

Forest without position information (RMSE = 31.6 Mg C ha21,

adjusted r2 = 0.43), but the Random Forest model that included

position information yielded a 20% improvement in RMSE (26.7

Mg C ha21) and a 60% improvement in adjusted r2 (0.59). The

improvement when using Random Forest with position informa-

tion appeared to be consistent at all distances from CAO LiDAR

data (Figure 6).

We examined the net bias in each of the 36 validation cells

separately by summing all residuals between predicted ACD and

aircraft-observed ACD within each cell. In doing so, we found that

Random Forest with position information out-performed both

Stratification and Random Forest without position information in

most cells (Figure 7). Notably, only one of 36 cells exhibited an

Figure 3. A distance transform map of the LiDAR-based carbon
density calibration data used to evaluate the performance of
the stratification and Random Forest models with increasing
distance from aircraft observations. White areas indicate the
greater distance from the calibration LiDAR flightlines in black.
doi:10.1371/journal.pone.0085993.g003

Figure 4. Predicted carbon stocks using three different
methodologies. (a) Stratification and mapping of median carbon
stocks in each class, (b) Random Forest without the inclusion of position
information, (c) Random Forest using additional model inputs for
position.
doi:10.1371/journal.pone.0085993.g004

Figure 5. Three side-by-side carbon map comparisons. (a)
Stratification minus Random Forest without position information, (b)
Stratification minus Random Forest with position information, (c)
Random Forest without position information minus Random Forest
with position information. Areas consistently lower when position
information is included (yellows in b and c) are largely low, inundated
swamps and wetlands or mid-elevation pasturelands—all of which
maintain high levels of photosynthetic vegetation cover (PV) but are
comprised of lower carbon stocks in the airborne LiDAR data. Light blue
areas (in b and c) are mostly low-elevation floodplain forests. See
Discussion section regarding two annotated regions.
doi:10.1371/journal.pone.0085993.g005
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absolute net bias greater than 10 Mg C ha21 when using Random

Forest with position information, and the overall distribution of

bias among validation cells exhibited greater kurtosis (i.e., the

distribution is more peaked around zero; Figure 7).

We found that the residuals of all three models were positively

spatially autocorrelated; i.e., errors were spatially clustered

(Figure 8). Moran’s I was highly significant in all cases

(P%0.0001): Random Forest without position information exhib-

ited the highest Moran’s I (0.1466), followed by stratification

(0.1155), and Random Forest with position information (0.1153).

Finally, we detected over-fitting by Random Forest; both with

and without position information, Random Forest’s internal ‘‘out-

of-bag’’ percent variation explained was 29% greater than what

the percentages determined using the 36 validation cells.

Discussion

Monitoring, reporting and verification is a critical part of any

possible tropical forest carbon accounting system [11,44]. But

from individual landowners to entire nations, each jurisdictional

entity must be able to determine not just how much carbon their

land holds, but where that carbon is located. Ultimately, this

means a spatially explicit, hectare-by-hectare capability is needed.

We show here that Random Forest machine learning—if carefully

implemented—can be a powerful spatial modeling tool to aid

tropical forest carbon monitoring.

We evaluated two options for Random Forest, in the first case

using a suite of input variables but lacking information on

geographic position. This model performed similarly to the more

traditional approach of stratification (sensu [7]), but it had some

drawbacks that suggest high risk: model fit to validation data was

somewhat better than stratification (i.e., modest decrease in RMSE

and increase in adjusted r2), but a downside was increased spatial

autocorrelation among the model residuals, as measured by a 27%

increase in Moran’s I when using Random Forest.

However, the second option, which included the same suite of

input variables as well as four position parameters, produced much

more accurate results with validation data compared to the

Figure 6. Performance of three modeling techniques as assessed in 36 validation cells. Left panels highlight model performance against
LiDAR-observed aboveground carbon density from CAO aircraft data (Mg C ha21), while right panels highlight the model performance by increasing
distance from CAO aircraft data. The color-scale reflects the two-dimensional density of observations, adjusted to one dimension using a square root
transformation.
doi:10.1371/journal.pone.0085993.g006
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stratification approach, and without increasing spatial autocorre-

lation in the residuals. Side-by-side comparison of the carbon

maps resulting from the three techniques provides some insight

into the improvement in model predictions when pixel position is

included (Figure 5). Within the Pacaya-Samiria swampland in the

focal area, for example, a band of floodplain forests several

kilometers wide follows the Ucayali River (annotation 1 in

Figure 5); these forests have high carbon stocks in LiDAR data,

but occupy a very low-lying area relative to the rest of the focal

area, and they appear to have common elevation, slope, and

greenness to lower-carbon swamps and marshes elsewhere in the

swampland. Similarly, context-dependent patterns appear to

influence carbon stocks in the southwest portion of the focal area

(annotation 2 in Figure 5). Here, high elevation forested valleys

have relatively high predicted carbon stocks in all three models,

but nearby east-facing mountain slopes maintain high greenness

yet exhibit lower carbon stocks in LiDAR data; these areas have

much lower predicted carbon stocks when position information is

included in the Random Forest model. Ecologically, the results

suggest that relative rather than absolute elevation may be more

predictive of localized variation in carbon stocks in many instances

throughout the region.

Our results suggest that the inclusion of position information is

helpful—and potentially critical—to advancing Random Forest as

an upscaling and modeling approach for tropical forest carbon

mapping. With position information as model input variables, we

suggest that Random Forest is better able to account for the

context in carbon stock patterns—i.e., spatial autocorrelation of

observed carbon stocks in LiDAR data—increasing its predictive

accuracy in unseen data. To our knowledge, although Random

Figure 7. Spatial performance of each modeling approach within 36 validation regions. The net bias for the model was determined
against the aircraft-based observed validation data (i.e., 1-ha CAO aircraft samples shown in black in figure 1). The color-scale is defined within the
histograms, and is constant in all panels.
doi:10.1371/journal.pone.0085993.g007
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Forest has been used in several ecological and spatial studies to

date, position information has yet to be included in any predictive

model of carbon or other ecological parameter [4,16,22,23]. Our

results suggest that future efforts should make better use of position

information in order to improve predictive power and possibly

better account for spatial autocorrelation. In principle, including

position information in the stratification approach might lead to a

similar improvement in performance. However, unlike Random

Forest, the stratification approach lacks an algorithm to decon-

struct which position information that is relevant to ACD patterns

and which is not. Given that 8,035 classes were created from the

intersection of the limited variable set considered in this case, the

rapidly increasing number of classes may quickly make the

exercise intractable.

Does Random Forest over fit to spatial data? Our results suggest

that it does. Random Forest leaves out portions of the input data

(called ‘‘out-of-bag’’) to evaluate its prediction and this approach is

theoretically less prone to over fitting to training data compared to

other machine learning algorithms [22]. But, in implementing

both instances of Random Forest here, the ‘‘out-of-bag’’ predictive

power generated by the model was 29% higher than what we

determined for validation areas never included at any stage.

Ultimately, while over-fitting is not desirable, Random Forest with

position information still produced the best results in unobserved

areas as assessed by validation data (Figure 7). This suggests that

care must be taken when using Random Forest with spatial data

and that the internal ‘‘out-of-bag’’ feature appears not to be robust

to spatial data.

Our mapping predictions exhibited spatial autocorrelation of

errors, as has been the case with most other regional-,

jurisdictional- and national-scale carbon mapping efforts. While

including position information as input variables in Random

Forest did reduce spatial autocorrelation, it did not eliminate it

(i.e., Moran’s I declined from 0.1466 to 0.1153, which was a

difference outside the standard deviation of each Moran’s I

estimate). With position information, Random Forest exhibited no

statistical difference in spatial autocorrelation from the stratifica-

tion approach (at a Moran’s I of 0.1155), yet produced a major

improvement in model performance in terms of RMSE and r2 in

validation data. Although the spatial autocorrelation of errors is

undesirable, Random Forest with position information provided

an improvement over stratification, and maintained the same

spatial autocorrelation as with stratification.

Machine-learning algorithms have the potential to substantially

improve spatial modeling of carbon stocks in tropical forests and

possibly other ecosystems. Although some drawbacks remain

unresolved—namely over-fitting and spatial autocorrelation of

model errors—Random Forest may provide a viable pathway to

improve large-area modeling of carbon stocks over existing

methods such as stratification. This is particularly true in large-

scale, high-resolution modeling exercises that are currently

intractable when using parametric statistical approaches such as

simultaneous autoregressive modeling due to computational

limitations (e.g., SAR [37,45]). We emphasize that our modeling

outcomes greatly benefited from an unprecedentedly high density

of airborne LiDAR data over a large geographic region, and this

suggests that high data density may be critical moving forward.

Further, testing Random Forest against other modeling approach-

es beyond stratification (e.g., k-nearest neighbor, maximum

entropy) is also critical to determine its ultimate utility in carbon

mapping.
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