
Forest Canopy Gap Distributions in the Southern
Peruvian Amazon
Gregory P. Asner1*, James R. Kellner2, Ty Kennedy-Bowdoin1, David E. Knapp1, Christopher Anderson1,

Roberta E. Martin1

1 Department of Global Ecology, Carnegie Institution for Science, Stanford, California, United States of America, 2 Department of Geographical Sciences, University of

Maryland, College Park, Maryland, United States of America

Abstract

Canopy gaps express the time-integrated effects of tree failure and mortality as well as regrowth and succession in tropical
forests. Quantifying the size and spatial distribution of canopy gaps is requisite to modeling forest functional processes
ranging from carbon fluxes to species interactions and biological diversity. Using high-resolution airborne Light Detection
and Ranging (LiDAR), we mapped and analyzed 5,877,937 static canopy gaps throughout 125,581 ha of lowland Amazonian
forest in Peru. Our LiDAR sampling covered a wide range of forest physiognomies across contrasting geologic and
topographic conditions, and on depositional floodplain and erosional terra firme substrates. We used the scaling exponent
of the Zeta distribution (l) as a metric to quantify and compare the negative relationship between canopy gap frequency
and size across sites. Despite variable canopy height and forest type, values of l were highly conservative (l mean = 1.83, s
= 0.09), and little variation was observed regionally among geologic substrates and forest types, or at the landscape level
comparing depositional-floodplain and erosional terra firme landscapes. l-values less than 2.0 indicate that these forests are
subjected to large gaps that reset carbon stocks when they occur. Consistency of l-values strongly suggests similarity in the
mechanisms of canopy failure across a diverse array of lowland forests in southwestern Amazonia.
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Introduction

Canopy gaps are openings in forest canopies caused by

structural failures ranging in size from individual branch loss to

multiple treefalls. At a given time, the spatial variability of canopy

gaps expresses patterns of mortality and physical damage, in

addition to subsequent gap filling that occurs via regrowth and

secondary succession. Termed static gaps, these openings in the

canopy provide insight to the spatial variation in carbon stocks,

habitat, and many other forest structural characteristics and

functional processes [1–7].

Although size-frequency distributions of canopy gaps provide a

unique view of the disturbance and recovery regimes of forests, for

the most part, their spatial and temporal variation remains very

poorly understood, due to the unmet requirement of measuring

large numbers of canopy gaps to develop distributional informa-

tion. A challenge for tropical forest ecology rests in the precise

spatial and temporal frequency of gap formation. For decades,

forest gap formation, and thus disturbance regimes, have been

assessed from opposing vantage points. Field plots have been used

to estimate rates and patterns of gap-phase dynamics at a local

scale, usually of one hectare or less [7,8]. In contrast, large

disturbances – those driven by humans such as logging as well as

natural events like forest canopy blowdowns – have been mapped

over large geographies using satellite sensors [9,10]. Quantifying

the continuum of disturbance sizes and frequencies between these

extremes remains a major challenge, particularly in the context of

mapping the geography of forest disturbance regimes [11].

Recently, an airborne three-dimensional (3-D) laser measure-

ment approach called Light Detection and Ranging (LiDAR) has

been used to overcome the challenges of distinguishing millions of

canopy gaps at large spatial scales [12,13], opening the door for an

improved understanding of canopy-gap size-frequency distribu-

tions. Using airborne LiDAR, Kellner and Asner [12] discovered a

surprising level of similarity among canopy gap-size frequency

distributions in Hawaiian tropical forests arrayed on diverse soil

types associated with geologic substrate age. Moreover, they

observed similar gap-size frequency patterns when comparing the

floristically unique Hawaiian island forests to a more typical

continental tropical forest in the Atlantic lowlands of Costa Rica.

The results suggested that, independent of environmental and

biogeographic origin, tropical forests may converge on similar size-

scaling patterns of canopy gaps. Despite the observation of

convergent gap patterns in contrasting Hawaiian and Costa Rican

forests, we currently lack the data required to know whether sizes

and spatial properties of canopy gaps converge to similar patterns

throughout the tropics. Understanding causes of variability in the

sizes and spatial properties of canopy gaps is key to modeling

ecosystem dynamics, and for estimating the role of abiotic (e.g.
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soils, climate, topography) and biotic (e.g. floristic composition)

factors mediating canopy turnover [4,14–17].

In forests of lowland Amazonia, the sizes and frequencies of

canopy gaps may yet be related to environmental factors that vary

at multiple spatial scales. Since forest biomass, structure and

floristic composition are well known to vary with topography,

geology and soils [18–22], we might expect canopy disturbance

regimes to vary on a similar basis. At the broadest regional scales,

geologic substrate imparts a strong set of controls over structure

and function [20,23]. Somewhat independent of geologic origin,

many landscapes within the western Amazon region can be

partitioned into two very broadly defined forest types: (i) erosional

terra firme (ETF) forests on elevated terraces with clayey soils often

classified as Ultisols to Oxisols; and (ii) depositional floodplain

(DFP) forests in low-lying areas near rivers and streams with

loamy-to-sandy soils often classified as Inceptisols [24]. Forests on

floodplains also often experience seasonal inundation, which

deposits sediments from upstream and from neighboring terra

firme. Combined, these nested abiotic factors could prove

important in mediating variation in disturbance regimes as

expressed in gap-size frequency distributions.

Characteristics of size-frequency distributions of canopy gaps

can be used to quantitatively describe the disturbance regime of a

forested landscape. When plotted on a log-log scale, the negative

slope of the relationship between gap sizes and their frequency is

the exponent (l) of a power-law distribution [7]. As a result, l
provides a quantitative measure of the prevailing gap size-

frequency pattern in a single parameter, and is thus useful for

comparing forests [12,25]. Previous work has suggested that l
values typically range from about 1.0–3.0 in forests, with a

threshold value of 2.0 providing a cutoff for whether a forest is

dominated by small or large gaps [26,27].

Using airborne LiDAR, we quantified canopy gap-size

frequency distributions throughout the southern Peruvian Amazon

basin. Our goal was to assess whether a regional mosaic of

geologic, topographic and canopy physiognomic variation imparts

differences in forest disturbance regimes as indicated by l-values.

Large values of l (.2.0) would suggest a forest dominated by

smaller gaps that may be indicative of high growth-low mortality

dynamics. Small l-values (,2.0) would indicate the prevalence of

larger canopy gaps associated with mortality of large canopy or

emergent trees or alterations to whole stands. We ask: Do different

lowland forests situated on contrasting terrains and geologies in the

Peruvian Amazon harbor intrinsically different gap-size frequency

distributions?

Materials and Methods

Study Region
The study was undertaken in the Madre de Dios watershed in

Peru, throughout a region of well-known geologic, topographic

and physiognomic variation stretching from the base of the Andes

to the border with the Brazilian State of Acre (Figure 1). Our

landscape-scale samples covered forests representing no less than 5

million ha common to the region as a whole [20]. The region

contains variable geology and topography [28]. The northern

section is dominated by highly dissected, rolling upland terrain

dating as far back as the Paleozoic. This region contains few large

rivers, yet numerous smaller depositional areas intermingled with

the higher terra firme [29]. The southern portion of the region can

be partitioned into predominantly two landforms: (i) ETF incised

with smaller streams of Pleistocene origin; and (ii) large low-lying

DFP ecosystems of Holocene origin. Floristic composition and

aboveground carbon stocks co-vary with these spatially nested

patterns of geology and topography [20]. The region also contains

some forests containing mid-story bamboo (‘‘pacal’’) associated

with the geologic feature known as the Fitzcarrald Arch [30]. This

region of the Amazon basin has relatively high soil fertility and

rapid tree turnover in comparison to forests in central Brazil and

to the northeast on the Guyana Shield [21].

Airborne LiDAR Data Acquisition
In July 2009, we flew the Carnegie Airborne Observatory

(CAO) Alpha system [31] to map 125,581 ha of forest in 13 survey

blocks along our regional transect, with each block ranging in area

from 225 to 14,062 ha (Table 1). CAO-Alpha included a

waveform LiDAR capable of mapping the forest canopy 3-D

structure as well as a high-fidelity imaging spectrometer for

interpretation and confirmation of forest types throughout the

study [20].

The CAO flights were conducted at 2000 m above ground level

at a ground speed of #95 knots. The LiDAR was operated with a

38-degree field of view and 50 kHz pulse repetition frequency,

resulting in 1.1 m laser spot spacing. Due to the custom-designed

laser beam divergence of the CAO Alpha system (0.56 mrad), each

laser shot overlapped by 50% for a continuous LiDAR coverage.

In addition, the LiDAR data were collected in parallel flight lines

overlapping by 50%, which provided laser point densities

averaging 2 pulses m22. Results reported here are for LiDAR

measurements digitized in up to 4 discrete returns per laser pulse.

The dataset thus contains approximately 10 billion laser returns

over the 125,581 ha needed for 3-D analyses of canopy gaps.

LiDAR spatial error was previously determined to be ,0.15 m

vertically and ,0.36 m horizontally (RMSE) [20,32].

LiDAR Data Processing
Laser ranges from the LiDAR were combined with the

embedded Global Positioning System-Inertial Measurement Unit

(GPS-IMU) data [31] to determine the 3-D locations of laser

returns, producing a ‘cloud’ of LiDAR data. The LiDAR data

cloud consists of a very large number of georeferenced point

elevation estimates (m), where elevation is relative to a reference

ellipsoid (e.g., WGS 1984). To estimate canopy height above

ground, LiDAR data points were processed to identify which laser

pulses penetrated the canopy volume and reached the ground

surface. We used these points to interpolate a raster digital terrain

model (DTM) for the ground surface. A 30 m x 30 m kernel was

passed over each flight block and the lowest elevation estimate in

each kernel was assumed to be ground. Subsequent points were

evaluated by fitting a horizontal plane to each of the ground seed

points. If the closest unclassified point was ,5.5 degrees and

,1.5 m higher in elevation, it was classified as ‘ground’. This

process was repeated until all points within the block were

evaluated. The DSM was based on interpolations of all first-return

points (i.e. it includes canopy top and ground if ground was the

first return, which would indicate bare ground surface exposed to

the sky, such as a 0 m gap). Measurement of the vertical difference

between the DTM and DSM yields a model of canopy height

above ground (digital canopy model, DCM).

Forest and Terrain Classification
To compare gap-size frequency distributions among forests in

the lowland Peruvian Amazon, we classified each LiDAR block by

its geologic, topographic and physiognomic composition (Table 1,

Figure 1). The Peruvian government’s geologic [29] and

vegetation maps were combined with NASA Shuttle Radar

Topography (SRTM) data to develop a basic classification of the

erosional terra firme portions of each study block as reported in

Canopy Gap in Western Amazonia
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Asner et al. [20]. In contrast, depositional areas including

floodplains receive minerals, soil, organic matter and nutrient

inputs from multiple sources nested throughout river-catchment

networks. As a result, all floodplains and stream systems are

classified here as one type of Holocene origin (Table 1).

Figure 1. Thirteen CAO LiDAR mapping blocks were acquired in the southern Peruvian Amazon. The upper inset shows location of the
study region within Peru. The lower inset shows the LiDAR mapping blocks against a map of aboveground carbon density (ACD; Mg C ha21), which
integrates regional variation in geology, topography and canopy physiognomy [20].
doi:10.1371/journal.pone.0060875.g001
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To partition each study block into depositional-floodplain (DFP)

and erosional terra firme (ETF) sectors, the LiDAR DTM was used

to model height above nearest river (or stream). A threshold value

in height above nearest river was then determined iteratively to

best delineate these two contrasting surfaces. We found that a

threshold of 15 m best separated them, which we confirmed with

field checks in study blocks 8 and 12.

Gap-size Frequency Analysis
We defined gaps in the forest canopy by applying a definition

similar to Brokaw’s [33] definition to the DCM results. In the

classical sense, gaps are openings in the forest canopy extending

down to an average height #2 m aboveground [33]. However,

because canopy height variations are continuously distributed, we

quantified the number and sizes of openings in the forest canopy in

1-m vertical slices [13]. This extension of Brokaw’s definition was

thus applied to a range of gap-depth classes, permitting analysis of

all gaps extending from the top of the canopy to different heights

aboveground.

Because LiDAR-based analyses yield gap data at all heights

aboveground, we initially focused attention in one of our core

study landscapes (block 12, Figure 2) to seek ways of reducing the

data volume to a few meaningful thresholds at which to report gap

size-frequency results. We selected block 12 because this area has

been a focus of very extensive ground-based research on canopy

composition, structure, function and remote sensing [34–36].

Through the analyses to be presented in the results section, we

found that two gap thresholds (#1 m and #20 m) were sufficient

to represent the overall pattern of static gaps on these two

landscapes. Gaps associated with the #1 m threshold can be

thought of as whole-tree and large canopy branch failures; those

with the #20 m threshold can be considered as failures of crowns

and branches mostly in the upper canopy. We applied these 1-m

and 20-m thresholds to all blocks throughout the study, facilitating

comparisons of gap-size frequency at block (i.e., landscape) and

regional scales.

To quantify the size frequency distribution of canopy gaps at 1-

m and 20-m height thresholds, we used the Zeta distribution,

which is a discrete power-law probability density. For the Zeta

distribution with parameter l, the probability that gap size takes

the integer value k is:

f (k)~
k{l

f(l)
ð1Þ

where the denominator is the Riemann zeta function, and is

undefined for l = 1. A detailed narrative and syntax for carrying

out this procedure using R is provided in Appendix S1 [37]. This

distribution is sometimes called the ‘discrete Pareto distribution’,

and is appropriate for modeling the size-frequency of canopy gaps

[27,38,39]. We calculated maximum likelihood estimates (MLE) of

l by minimizing a negative log-likelihood function [39].

Results

Block 12
We found that the core study area of block 12 was

representative of three regional patterns describing forest structure

and size-frequency distributions of canopy gaps. These patterns

were consistent across all blocks: (i) significant differences in

canopy height between DFP and ETF substrates; (ii) similarity in

scaling exponents of gap size-frequency distributions despite height

differences on adjacent substrates, and (iii) often more gaps in ETF

forests than in DFP forests. For additional reference, we provide

the gap-size frequency distributions, MLEs, and sample sizes for

all forest blocks in Appendix S2.

In block 12, the mean (6 s.d.) height of DFP forests

(20.2610.5 m) was slightly but significantly lower than ETF

forests (22.566.5 m) (t-test; p,0.05) (Figure 3a). However, there

was a much wider range of height values in the DFP compared to

the ETF, and much taller trees could be found throughout the

DFP (Figure 2b,c). Despite these differences in the mean and

variance of canopy height, the vertical distribution of l-values in

Table 1. Thirteen airborne LiDAR study blocks were used to map depositional-floodplain (DFP) substrates (68, 958 ha) and a
variety of erosional terra firme (ETF) substrates (56,623 ha).

Flight DFP ETF ETF

Block Substrates (ha) Substrates (ha) Geologic-Topographic-Physiognomic Descriptor

1 1,573 10,909 Neogene – Low Rolling Hills – Dense Tree Canopy

2 605 2,526 Neogene – Low Rolling Hills – Dense Tree Canopy

3 6,654 6,586 Paleozoic – High Rolling Hills – Dense Tree Canopy

4 – 13,215 Paleozoic – High Rolling Hills – Bamboo-dominated Canopy

5 1,585 8,209 Pleistocene – High Flat Terraces – Mixed Swamp/Tree Canopy

6 4,753 4,133 Pleistocene – High Flat Terraces – Dense Tree Canopy

7 7,826 813 Pleistocene – Low Flat Terraces – Open Tree Canopy

8 14,062 4,726 Pleistocene – Med. Flat Terraces – Dense Tree Canopy

9 8,650 306 Pleistocene – Low Flat Terraces – Dense Tree Canopy

10 225 2,807 Pleistocene – Low Flat Terraces – Dense Tree Canopy

11 8,092 – –

12 11,300 1,583 Pleistocene – Low Flat Terraces – Mixed Swamp/Tree Canopy

13 3,473 810 Pleistocene – Low Flat Terraces – Mixed Swamp/Tree Canopy

TOTAL 68,958 ha 56,623 ha

The terra firme zones are described in terms of basic geologic, topographic and physiognomic composition.
doi:10.1371/journal.pone.0060875.t001
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the forest canopies was similarly shaped in each forest type

(Figure 3b). Both showed a hump-shaped distribution of l that

peaked at intermediate height classes. Smaller values (l = 1.60–

1.85) occurred from ground level to about 20 m, above which l
increased. The absolute minima were reached at 16 m and 18 m

in ETF and DFP forests, respectively. Thereafter, l increased to

about 25 and 30 m in each forest type, respectively.

Uniformity of the vertical distributions of l (Figure 3b), even

with contrasting height distributions (Figure 3a), indicated that we

could compress the reported data volume into two integrated

vertical height classes. The first class includes all gaps with

vegetation #1 m in height. The second class includes all gaps with

vegetation #20 m in height. In this latter case, we are considering

the gap-size distribution for only the smaller gaps found in the

mid-to-upper canopy.

We next show the size-frequency distributions in block 12 for

canopy gaps with vegetation #1 m and #20 m in height

(Figure 3c). In both DFP and ETF forests, gap-size frequency

followed the power-law Zeta distribution. In the case of block 12,

gap numbers were larger in the 20-m class than in the 1-m class,

on both DFP and ETF substrates. However, we also found that the

total number of gaps was much higher on DFP than on the ETF at

this site (Figure 3c). The parameter l was similar for gaps #1 m

and #20 m in height for DFP forests. Based on the findings for

block 12, we compared canopy height distributions and l-values at

the 1-m and 20-m vegetation height thresholds for the remaining

blocks (Appendix S2).

Canopy Height Distributions
Mean (6 s.d.) canopy heights ranged from minimum of

12.1611.5 m to a maximum of 24.967.8 m across all study

blocks (Table 2). Regionally, ETF forests had canopies with

heights that were 17% taller than those on DFP. However, in any

given landscape or sampling block, ETF were 4–82% taller than

their paired DFP sites. In 9 of 13 blocks, the height ranges were

substantially larger in the DFP. There were no significant

relationships between mean canopy height and l with the

exception of the DFP 1-m gap class (r = 0.81, p,0.01).

Gap-size Frequency Distributions
We mapped 1,000,703 gaps with vegetation #1 m in height

(Table 2). Averaged across blocks, the l-values for these gaps were

1.86 (60.08) and 1.88 (60.09) on DFP and ETF substrates,

respectively. Within blocks, l-values were also very similar on DFP

and ETF surfaces, with the largest difference of just 7% found

between the two substrates in block 12. Regionally, l-values were

8–9% higher, indicating smaller gaps overall, in DFP areas on the

much older, rolling terrains in the north (blocks 1–4) as compared

to southern blocks containing wider floodplains (blocks 9–13). A

similar yet even weaker pattern was observed on ETF, where l-

values were approximately 4% higher in the more dissected

northern blocks as compared to the southern flat terraces of

Pleistocene origin (Table 2).

We mapped 4,877,234 gaps with vegetation height #20 m

(Table 2). Averaged across blocks, the l-values for these gaps were

1.85 (60.10) and 1.75 (60.08) on DFP and ETF substrates,

respectively. Again, the l-values were 3–7% higher in the

northern blocks with more narrow floodplains and more dissected

Figure 2. One 13,883 ha Amazonian landscape (block 12; Figure 1) showing (a) the digital terrain model with additional processing
to delineate depositional floodplain (DFP; red) and erosional terra firme (ETF; white) substrates; (b) forest canopy height derived
from 3-D imaging; and zoom images to indicate differences in height and gap variation within (c) DFP and (d) ETF forests. Each
zoom image is 50 ha in size. Individual crowns are visible in red colors; forest canopy gaps are indicated in blue.
doi:10.1371/journal.pone.0060875.g002

Figure 3. Canopy structure and gap statistics for CAO mapping
block 12 including: (a) the distribution of canopy height for
erosional terra firme (ETF) and depositional floodplain (DFP)
forests (see Figure 2); (b) the vertical distribution of power-law
exponents (l) for each forest type in block 12; and (c) the gap-
size frequency distributions for ETF and DFP forests for canopy
gaps at ,1 m and ,20 m thresholds. Power-law exponents (l) and
the number of mapped gaps (n) are also provided.
doi:10.1371/journal.pone.0060875.g003
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erosional surfaces, but the pattern was even less predictable for

many of the individual landscapes (Table 2). Overall, the range of

l-values, whether representing gaps with vegetation height #1 m

or 20 m, was small across all landscapes, and on both DFP and

ETF substrates.

Discussion

Similar Gap-size Frequency Distributions
Size frequency distributions of canopy gaps were largely

invariant among forests on erosional-terra firme and depositional-

floodplain substrates in 125,581 ha of the Peruvian Amazon basin.

Scaling exponents varied ,7.0% across wide-ranging geologic,

topographic, and physiognomic conditions typical of southwestern

lowland Amazon forests, as indicated in a summarized comparison

of the size-frequency distributions in Figure 4. This surprising

degree of similarity in gap-size frequency distributions indicates

convergent structural responses to canopy failure, which are

independent of regional- and landscape-scale variation in soil

fertility, hydrological conditions, and a host of other factors. This

occurs despite the fact that canopy height varies within landscapes

and regionally (Table 2). Moreover, because aboveground carbon

stocks are tightly linked to tree height [20,40,41], it follows that

regional patterns of carbon storage will be unrelated to size-

frequency distributions of canopy gaps.

The repeatability of the power-law relationship for representing

gap-size frequency distributions, combined with the observed

limited range of values in its scaling coefficient l, suggests that

lowland Amazonian forest canopies display similar gap-scaling

processes across a wide range of floristic and environmental

conditions. This may, in turn, be traced to similarity in how trees

fill three-dimensional space in mature tropical forests. Much

theoretical work has focused on providing an explanatory

foundation for understanding canopy space-filling patterns,

particularly using metabolic scaling theory and cellular automata

[42,43]. If our observations of consistent gap-size frequency

patterns are indeed tied to canopy space-filling patterns, then

LiDAR-based surveys will provide a useful constraint over models

of canopy space-filling processes. Independent of whether one

works with gaps or with filled space in the canopy, no study has

definitively explained the biological or ecological causes for such a

high level of scaling consistency. General thinking on the matter

has long invoked resource limitation – particularly light – as a

driver of the consistent space-filling patterns we observe in many

forests [44,45]. Our large-scale, high-resolution observations could

be combined with existing models to advance our understanding

of the evolution of tropical forest canopy structure and architec-

ture.

Southwestern Amazonian Disturbance
Amazonia has emerged as an epicenter for canopy analysis of

forest disturbance due to disagreement about the role of the Basin

in the carbon cycle [26,27,46–48]. Studies using time series

satellite observations suggest that mesoscale weather-related

disturbances, referred to as blowdowns, reset the forest succes-

sional clock by severely damaging large stands of trees [49–51].

While there is no doubt that such large-scale disturbances initiate

secondary succession, the debate rests on whether these events are

geographically widespread across the Basin, as well as how

frequently they occur in any location. Meanwhile, plot-scale

studies suggest that forest carbon accumulation is increasing

through time [52,53], not as recovery from large-scale blowdowns,

but perhaps as a response to atmospheric CO2 fertilization

enhancing growth over mortality [54].

Although our sampling of 125,581 ha of forest, representing

differing abiotic and biotic conditions found throughout millions of

hectares of the southwestern Amazon, is the largest-scale, highest-

resolution mapping of canopy gaps to date, it cannot account for

the possibility that a once-per-century blowdown might have reset

the carbon accumulation clock somewhere within the study

region. With blowdowns occurring so infrequently, the LiDAR

mapping would need to cover even more geography to detect such

Table 2. Mean canopy height (6 standard deviation) of forests on depositional-floodplain (DFP) and erosional terra firme (ETF)
substrates (see Table 1), along with Zeta distribution (power-law) exponents (l) of the gap-size frequency distributions for each
site.

Block DFP Substrates ETF Substrates

Height (SD) l1 l20 Height (SD) l1 l20

1 22.5 (9.3) 1.93 (9020) 1.81 (71751) 23.6 (8.8) 1.95 (44803) 1.87 (614784)

2 21.8 (8.3) 1.93 (2755) 1.96 (29367) 22.9 (8.5) 2.00 (8979) 1.84 (115469)

3 21.6 (9.6) 1.95 (43144) 1.90 (311181) 24.8 (9.2) 1.98 (20491) 1.80 (347253)

4 – – – 22.5 (10.7) 1.73 (175825) 1.76 (613018)

5 23.9 (8.7) 1.97 (9137) 1.83 (91764) 24.9 (7.8) 1.93 (38004) 1.72 (450834)

6 20.6 (8.8) 1.81 (36329) 1.81 (178283) 23.4 (8.1) 1.82 (24669) 1.68 (160665)

7 12.1 (11.5) 1.70 (331647) 1.87 (307547) 22.0 (8.4) 1.75 (9238) 1.72 (33536)

8 19.0 (9.8) 1.89 (150971) 1.86 (483723) 23.7 (8.4) 1.85 (24212) 1.65 (173344)

9 15.4 (11.9) 1.80 (138192) 1.92 (271617) 21.6 (8.4) 1.85 (1461) 1.74 (11661)

10 18.0 (7.5) 1.71 (4916) 2.03 (3317) 22.3 (7.5) 1.74 (44851) 1.85 (35987)

11 20.3 (7.2) 1.88 (28985) 1.72 (261803) – – –

12 20.2 (10.5) 1.78 (146413) 1.74 (439677) 22.5 (6.5) 1.91 (5995) 1.63 (57901)

13 19.5 (10.3) 1.80 (38208) 1.75 (122226) 21.0 (6.4) 1.88 (3343) 1.74 (26605)

Values are provided for gaps reaching to the ground level (l1 or $1 m) and for gaps found only in the upper canopy (l20 or $20 m). Values in parentheses indicate
the number of gaps mapped in each landscape.
doi:10.1371/journal.pone.0060875.t002
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large-scale disturbances [48]. And while we did not detect the

presence of blowdowns in this study, a similar style of LiDAR

sampling did reveal one ,2,000 ha blowdown in 465,000 ha of

forest sampled in the Colombian Amazon [55]. The inclusion of

large-scale, extremely infrequent gap forming events thus remains

a hit-or-miss undertaking when using airborne techniques.

Integration with wall-to-wall satellite mapping approaches are

needed to determine their contribution [56].

Notwithstanding extremely rare disturbance events, the wide

spatial coverage and high resolution of the LiDAR measurements

provide a uniquely robust sampling of landscape-scale disturbance

regimes in southwestern Amazonia. Nearly all of our landscape l-

values were 10–20% lower than 2.0, which is the threshold used to

define forests subjected to larger disturbances versus those

undergoing much smaller, finely-grained dynamics [26,27].

Although Fisher et al. [27] suggested that Amazonian forests have

intrinsic l-values in the 1.1–1.6 range, which would indicate the

prevalence of massive, stand-resetting disturbances, Lloyd et al.

[26] later recalculated their results to produce an estimated l
range of 1.9 to 3.1. Our results strongly suggest that southern

lowland Peruvian forests are at the lower end of this range, and

thus these forests are subject to relatively large gap-forming

processes, likely associated with large crown turnover as well as the

prevalence of fairly strong winds and storms known regionally as

‘‘friaje’’ [57].

Beyond the comparisons to Fisher et al. and Lloyd et al.,

additional comparisons of our gap-size distributions to other

tropical forests remain limited at this time, owing to the scarcity of

tropical studies in the literature. Kellner et al. [13] reported l-

values of 1.99 and 1.66 for canopy gaps with vegetation height

#1 m and #20 m aboveground for a lowland Costa Rican

tropical forest. In comparison to their site, we found southwestern

Amazonian forests to harbor larger gaps on average that extend

from top-of-canopy down nearly to the ground (l = 1.87 for

#1 m gaps), but relatively smaller gaps in the upper canopy (l
= 1.80 for #20 m gaps). However, a variety of submontane

Hawaiian forests contained stands with l-values ranging from 1.8

to 2.6, even though the stands were each dominated by a single

keystone Hawaiian canopy species, Metrosideros polymorpha [12].

This suggests that gap-size frequency exponents can vary

substantially even in the absence of floristic compositional changes,

and very much in response to abiotic factors including soils and

Figure 4. Graphical representation of size-frequency distributions of canopy gaps on erosional terra firme and depositional
floodplain substrates in the southwestern Peruvian Amazon at two height thresholds. The slopes of these lines are power-law exponents
from the Zeta distribution that we estimated using maximum likelihood. Additional details are in Appendices S1 and S2.
doi:10.1371/journal.pone.0060875.g004
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terrain. Our results, however, indicate quite the opposite – that

widely varying environmental conditions (albeit all in lowland

Amazonia) do not impart an identifiable pattern in the spatial

scaling of forest canopy gaps.

We note that our results were fairly consistent at both the 1-m

and 20-m vegetation height thresholds (Table 2). The l-values

were an average 3% lower in the 20-m than in the 1-m class for

the majority of floodplain and terra firme landscapes, which may

indicate a slightly elevated degree of larger gaps in the upper

canopy. However, the pattern was extremely variable, with l up to

15% lower in the 20-m than in the 1-m class on terra firme in our

core site – block 12. Moreover, block 10 contained a wide

floodplain harboring canopy gaps that were 20% larger in the 20-

m class as compared to the 1-m class. Reviewing the canopy height

maps among all sampling blocks, we think that variation in gap-

size distributions in floodplain environments is more an expression

of hydrologically-mediated disturbance (e.g., seasonal flooding)

than it is of an underlying floristically-based process affecting gap-

size frequencies.

Independent of the vegetation-height thresholds used in this

study, we see a need for standardization in the measurement and

reporting of forest canopy gap distributions using LiDAR. This

technology can image a forest in 3-D at resolutions ranging from

meters to centimeters, resulting in different gap-size detections

based simply on spatial resolution. Moreover, the data can be

partitioned by vertical stratum in the canopy, as we showed in

Figure 3b, leading to variation in gap-size frequency estimates

vertically that may exceed those derived among comparative

forests (i.e., see l-values in Figure 3b vs. Table 2). Here we

presented results from LiDAR measurements made with an

average of two pulses m22 and a laser beam divergence that

preserves full overlap between adjacent laser spots to provide

continuous spatial coverage. Other LiDAR systems, measurement

specifications, and analytical approaches will result in different

gap-size frequency distributions, and thus potentially different

estimated values of l. We suggest that, in the minimum, future

reports provide specific information on the LiDAR measurement

settings, pixel size, flight parameters, instrumentation and the

portion of the vertical canopy profile of interest. Better yet, we

further suggest a nominal sampling protocol: Through extensive

testing, we have found that ,1 m spot spacing with $2 pulses

m22 provides a detailed set of canopy measurements that can be

achieved with nearly any airborne scanning LiDAR system in

operation today.

Limitations
Despite our relatively straightforward results, we also recognize

several limitations in the study. First, we are only reporting on the

southern Peruvian lowland Amazon. The results presented here

need to be compared to forests in the foothills and montane

transition from the lowlands up into the Andes, as well as in other

lowland forests throughout Amazonia. Given that forest carbon

stocks, productivity and floristic composition vary widely across

the Basin [21,58], our results should not be used to represent the

entire region as a whole. Second, we present gap-size frequency

distributions for large landscapes that average local-scale variation

in floristic composition, such as swamp-dominated vegetation,

palm forests, and pockets of bamboo forest, all of which occurs in

smaller fractions of the landscapes we reported. These localized

variations in forest composition are likely to impart variation in

gap-size frequency distributions, but the magnitude of their impact

on our conclusions is not known.

Like most LiDAR-based studies, this work imaged static gaps in

the canopy. A static gap is an opening in a forest canopy at a given

point in time. When such an opening was formed is unknown at

the time of observation, and thus static gaps confound time with

disturbance intensity (i.e. square meters of canopy loss). As such, it

remains unknown whether any given gap is shrinking due to

regeneration or growing due to adjacency effects from neighboring

individuals [59,60]. The best way around this problem is to image

canopy disturbances directly to derive recent disturbance events.

Our forthcoming reports will include results from repeat mapping

to derive dynamic rates and patterns of tropical forest gap

formation and closure.
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49. Negrón-Juárez RI, Chambers JQ, Guimaraes G, Zeng H, Raupp CFM, et al.

(2010) Widespread Amazon forest tree mortality from a single cross-basin squall

line event. Geophysical Research Letters 37: n/a-n/a.

50. Nelson BW, Kapos V, Adams JB, Oliveira WJ, Braun OPG (1994) Forest

Disturbance by Large Blowdowns in the Brazilian Amazon. Ecology 75: 853–

858.

51. Chambers JQ, Negron-Juarez RI, Marra DM, Di Vittorio A, Tews J, et al.

(2013) The steady-state mosaic of disturbance and succession across an old-

growth Central Amazon forest landscape. Proceedings of the National Academy
of Sciences.

52. Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffoe K, Baker TR, et al. (2009)

Increasing carbon storage in intact African tropical forests. Nature 457: 1003–
U1003.

53. Phillips OL, Mahli Y, Higuchi N, Laurance WF, Núñez PV, et al. (1998)
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