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Abstract

Background: High fidelity carbon mapping has the potential to greatly advance national resource management
and to encourage international action toward climate change mitigation. However, carbon inventories based on
field plots alone cannot capture the heterogeneity of carbon stocks, and thus remote sensing-assisted approaches
are critically important to carbon mapping at regional to global scales. We advanced a high-resolution, national-scale
carbon mapping approach applied to the Republic of Panama - one of the first UN REDD + partner countries.

Results: Integrating measurements of vegetation structure collected by airborne Light Detection and Ranging (LiDAR)
with field inventory plots, we report LiDAR-estimated aboveground carbon stock errors of ~10% on any 1-ha land
parcel across a wide range of ecological conditions. Critically, this shows that LIDAR provides a highly reliable
replacement for inventory plots in areas lacking field data, both in humid tropical forests and among drier tropical
vegetation types. We then scale up a systematically aligned LIDAR sampling of Panama using satellite data on

topography, rainfall, and vegetation cover to model carbon stocks at 1-ha resolution with estimated average pixel-level
uncertainty of 20.5 Mg C ha™' nationwide.

Conclusions: The national carbon map revealed strong abiotic and human controls over Panamanian carbon stocks,
and the new level of detail with estimated uncertainties for every individual hectare in the country sets Panama at the
forefront in high-resolution ecosystem management. With this repeatable approach, carbon resource decision-making
can be made on a geospatially explicit basis, enhancing human welfare and environmental protection.

Keywords: Biomass, Carbon stock, Carnegie Airborne Observatory, Deforestation, Forest degradation, Forest inventory,

Light Detection and Ranging, Panama

Introduction

Carbon accounting has reached the vanguard of national
resource management. The carbon stored in vegetation
and soils is a vitally important component of national
greenhouse gas mitigation strategies [1], and abrupt
changes in carbon storage can indicate interruptions of
other ecosystem services such as water quality and bio-
diversity [2,3]. Despite the widely recognized importance
of carbon storage in ecosystems, geospatially explicit
mapping and monitoring of carbon stocks has remained
a challenge, largely due to the natural heterogeneity of

* Correspondence: gpa@carnegiescience.edu

'Department of Global Ecology, Carnegie Institution for Science, 260 Panama
Street, Stanford, CA 94305, USA

Full list of author information is available at the end of the article

( BioMVed Central

vegetation structure, diffuse and ubiquitous patterns of
land-use change, and inexact techniques and technolo-
gies for carbon measurement [4,5]. Geospatially explicit
carbon accounting would provide enormous benefits for
national resource monitoring, and would greatly acceler-
ate international agreements on carbon emissions, such
as REDD + (Reduced Emissions from Deforestation and
Forest Degradation), which must be implemented with
confidence among participating countries [6,7].
Traditionally, national-scale carbon monitoring has
been accomplished with networks of field inventory
plots [8]. Much effort and expense has been applied to
install and monitor such plots, yet they often prove diffi-
cult to maintain over time. Furthermore, plot networks
offer direct measurement of a tiny amount of actual
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forest [9], without an ability to report on spatially expli-
cit carbon stocks and changes in those stocks (emis-
sions). In response to this challenge, there has been
rapidly growing interest in the use of geospatial mapping
technologies to augment field plot inventories [10], and
several new approaches have emerged to extend plot-
based carbon estimates to millions of hectares [11], and
even globally [12,13]. Airborne laser technology called
Light Detection and Ranging (LiDAR) stands apart in
this effort because, like field inventories, LIDAR mea-
sures aspects of the physical structure of woody vegeta-
tion in ecosystems ranging from sparse shrublands to
dense forests [14-17].

Even with the advent of airborne LiDAR as a game-
changing tool for estimation and monitoring of above-
ground carbon stocks, reducing cost in its application at
national scales requires approaches that integrate LIDAR
sampling measurements of vegetation structure with
full-coverage satellite data. Testing has demonstrated
that this is best done using spaceborne optical and radar
sensors imaging at 10-m to 1-ha spatial resolution in
order to resolve fine-scale variation in vegetation cover
and condition [18,19]. These higher resolutions, while
becoming increasingly routine at the national level [19],
remain mostly for the future in operational global-scale
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monitoring [20]. With the upscaling step from LiDAR to
full-coverage satellite maps, however, uncertainty is in-
troduced on the per-hectare basis, and this uncertainty
has remained extremely difficult to assess in a geospatially
explicit manner. As a result, questions persist over the
per-hectare reliabilities of national-scale carbon stock
monitoring [21], and this issue continues to stand in the
way of what could be a strong economic forcing mechan-
ism to mitigate climate change.

Using a new combination of techniques, we developed
a high-resolution nationwide map of aboveground tree
carbon stocks, referred to as aboveground carbon dens-
ity (ACD), with geospatially explicit uncertainty esti-
mates for the Republic of Panama. This paper focused
exclusively on ACD of standing trees > 10 cm in diam-
eter, and not on belowground carbon, necromass, or li-
anas and small woody plants. Although Panama is a
relatively small nation of 7,551,700 ha, the country con-
tains a vast array of environmental conditions and a
complex mosaic of land-use histories, resulting in a wide
range of tropical vegetation types and carbon stocks
(Figure 1). Our goal was to integrate and test the accur-
acy of methods for scaling ACD estimates from field
plots, to airborne LiDAR measurements, to the national
level using high-resolution satellite imagery. Critically,

Figure 1 Major remote sensing inputs to the national carbon mapping study. (a) LiDAR flight coverage obtained by Carnegie Airborne
Observatory, including systematic sampling designed to achieve robust coverage of national ecosystems, plus additional samples added as time
and weather permitted, and three large validation areas set aside to evaluate national mapping approaches. (b) CLASIite fractional cover based
on a mosaic of 158 Landsat scenes, and MODIS data in areas of poor Landsat coverage. Image is a red-green-blue composite, with % bare soil or
substrate coverage shown in red, % photosynthetic vegetation (PV) shown in green, and % non-photosynthetic vegetation (NPV) shown in blue.
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we estimate and map the uncertainty of carbon stocks in
every hectare of Panama. The hectare has proven to be a
reliable unit for carbon stock error estimation [22], and
it is the most common unit of land utilization and eco-
logical condition in science, conservation, management
and resource policy development activities [5,19,23].

Results and discussion

Airborne LiDAR mapping

Top-of-canopy height (TCH) was measured at 1.1 m
spatial resolution in systematically collected, national
LiDAR sampling transects covering a total of 391,857 ha
throughout Panama (Figure 1). Calibration of airborne
LiDAR TCH measurements to estimated aboveground
carbon density (ACD) in 228 field plots ranging in size
from 0.1-0.36 ha are highly predictive of field-estimated
ACD (adj-r*=0.86, RMSE =17.6 Mg C ha™) across a
range of vegetation types, from forests to grasslands, and
across wide-ranging environmental conditions (Figure 2a,
Additional file 1: Table S1; Additional file 2: Figure S1).
Furthermore, 91 additional plots (0.1-1.0 ha) set aside
and used solely for validation are even more tightly re-
lated to LiDAR-estimated ACD (adj-r* = 0.92, RMSE =
10.6 Mg C ha™) (Figure 2b, Additional file 2: Figure S2).
These LiDAR-to-ACD estimates fall well within the
error range of the plot-based estimates, and critically
they approach 10% error at 1-ha plot scale.

National mapping

Decision-tree and stratification approaches yielded simi-
lar national-scale maps of aboveground carbon densities
(Figure 3). Analyses conducted on LiDAR-scale ACD
maps and satellite data quantitatively link elevation,
slope, climate and fractional canopy cover to carbon
storage patterns (Additional file 2: Figures S3-S6). The
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highest ACD levels are found in humid forests on the
Caribbean side of the continental divide running east—
west throughout the country. These forests cover approxi-
mately 2,000 km® of Panama, and where they are undis-
turbed, their ACD levels often exceed 100 Mg C ha™.
Moreover, large tracts of forest to the east in the Darien
region near Colombia, as well as in the Panama Canal area
(Figure 4), and a few smaller areas on the Pacific side,
also contain substantial carbon stocks. With few ex-
ceptions, the large remaining tracts of contiguous
forest in Panama are contained within areas set aside
for conservation, canal watershed protection, or within
indigenous territories.

In contrast to the high biomass forests, large regions
of the country are comprised of deforested land with
very low carbon stocks. These areas are primarily found
to south of the continental divide on the Pacific side of
the country, and in large developed corridors outside of
the protected watershed of the Panama Canal (Figure 4).
Additionally, a relatively narrow stretch of Caribbean
coastal community harbors suppressed carbon stocks,
particularly in the west near Bocas del Toro and in Guna
Yala to the east. Finally, there is a region to the west of
the Panama Canal that, while still forested, has been de-
graded by development, displaying ACD levels that are
lower than neighboring forests in similar physiographies
(Figure 3).

National map validation

Using six separate ecoregions, each at least 1,000 ha in size
(see Methods), we quantitatively compared distributions of
vegetation ACD derived with LiDAR against those extrapo-
lated to the national scale with satellite data and modeling
(Figure 5, Additional file 2: Figures S7 and S8). The
decision-tree approach for national upscaling provides a
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Figure 2 Linking airborne LiDAR to field-based estimates of aboveground carbon stocks. (a) Calibration of LIDAR top-of-canopy (TCH)
height to field-plot estimates of aboveground carbon density [ACD = 0.359TCH'"%’%]. (b) Separate validation plots in four ecoregions were
compared against the calibration model, which is the black line in both panels. For the validation plots, RMSE (predicted versus observed)
represents an estimate of LiDAR-calibration uncertainty, given that the field plots are not randomly distributed across the study area.
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Figure 3 National-scale mapping of aboveground carbon density (ACD) using two techniques. (a) Decision-tree based mapping with the
RandomForest algorithm; (b) Stratification of satellite input variables into 2039 unique classes.
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better result, with mean biases (net difference in national
mapping and LiDAR-scale carbon) < 15.3 Mg C ha™ in all
six ecoregions (Figure 5). Despite low biases, some regions
are noisier where satellite coverage is poor due to persist-
ent cloud cover (e.g., Additional file 2: Figure S8). In all but
one case, biases are larger when using the upscaling ap-
proach based on stratification, particularly in high elevation
wet forests (Figure 5). Given these findings, we carried for-
ward only the decision-tree based approach for the
remaining analyses.

To estimate per-hectare uncertainties, we modeled the
pixel-level relationship between errors in LiDAR valid-
ation regions versus the national-scale ACD estimates
(see Methods). We propagated these estimated mapping
errors using field plot-to-LiDAR calibration errors that
we established during validation (10% at 1 ha resolution;
Figure 2b), using the square root of the sum of squared er-
rors in units of carbon per hectare. Due to heteroskedasticity
common to carbon stock errors at both the tree and plot
scales [24-27], the resulting mapping errors follow the same
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Figure 4 The mark of more than a century of land development in Panama, contrasted with forest conservation within the area of the
canal. The canal area (center panel) contains some old-growth forests such as on a portion of Barro Colorado Island (BCl), with carbon stocks >
100 Mg C ha™', and extensive areas of mature secondary forests with carbon stocks nearly as high. To the northeast and southwest of the canal
area, carbon stocks are greatly suppressed due to land-use change, particularly on the Pacific side near Panama City.
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Figure 5 LiDAR-based validation for six distinct ecoregions in Panama. For each region, more than 1,000 ha of LiDAR-estimated ACD
data are compared to the stratification (black) and decision-tree (red) modeling results for national-scale ACD maps. Biases (national minus
LiDAR-scale) are <153 Mg C ha™' for all regions using the decision-tree based approach.

pattern, with larger errors in regions of greater mapped car-
bon density (Figure 6, Additional file 2: Figure S9). In the
national map, these range from << 5 Mg C ha™' in lower-
biomass regions to > 30 Mg C ha™ in regions harboring the
highest carbon stocks. Critically, however, LIDAR-scale esti-
mates of carbon stock, which alone cover 4% of Panama
(see lines in Figure 6), have far lower map-scale uncertainties
of about 2 Mg C ha™ in the lowest biomass regions and < 15
Mg C ha™ in most high-biomass forests (> 100 Mg C ha™)
(Figure 6).

Our results demonstrate the accuracy, relative to ex-
haustively measured field plots, of using airborne LiDAR
for estimating aboveground carbon densities across
vegetation types ranging from grasslands to dense trop-
ical forest in Panama. The LiDAR-based carbon mapping
uncertainty of about 10% at 1-ha resolution has now
been demonstrated empirically in several tropical forest
LiDAR studies [28,29] as well as in a recent metaanalysis
[17], but rarely has a large number of field plots been
available for completely independent validation of the
LiDAR calibration, as we have shown here. Critically,
this 10% mismatch between LIDAR-based and plot-
based estimates of ACD at 1-ha resolution is within the
range of the uncertainty reported for field plots alone,
which can reach 20-30% [30,31].

At this point, the challenge in decreasing uncertainty
rests with improving the field techniques, which will re-
quire more emphasis on measuring real plot-level forest
biomass instead of estimating biomass from traditional

field inventories with allometric equations [4,32]. More
work should also go into developing improved con-
versions between biomass and carbon [33]. As efforts
expand to improve plot-based ACD estimates, their ca-
libration against LiDAR data will also improve and will
further reduce the overall uncertainty of LiDAR-assisted
carbon mapping. Importantly, although improvements
in the field-based stem allometries underlying LiDAR
calibrations would alter the overall levels of geospatially-
estimated ACD, such changes would affect both field-
based and LiDAR-based predictions in concert, with
little to no influence on relative spatial uncertainties
[4,34]. In general, our results show that LiDAR ap-
proaches can stand in for field plots, both in humid
tropical forests and among drier tropical vegetation
types.

The value of geospatially explicit carbon mapping is
further expressed at the national level. As the LiDAR ap-
proaches replace field inventories as a primary estimator
of aboveground carbon stocks, the enormous regional
sampling provided by airborne LiDAR surveys allows for
improvements in linking mapped environmental variables
and land-use data to mapped carbon stocks. From this
step, the underlying environment-to-ACD relationships
that then support stratification, decision-tree analysis or
other methods of upscaling become more robust, and as
result, the national maps become increasingly reliable.
Our analyses indicate that the fractional cover of photo-
synthetic and non-photosynthetic vegetation from Landsat
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Figure 6 Geospatially explicit uncertainty estimates at 1-ha resolution based on nested field-plot, airborne LiDAR, and decision-tree
modeling methods. Note that direct LiDAR-observed areas (e.g., thin transects, and large polygons in insets 1 and 2) achieve extremely low
uncertainties compared to areas upscaled to the national level using models.
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imagery, along with topography and climate data, play
a contributing role in mapping national-scale ACD with
low uncertainties on a per-hectare basis (Additional file 2:
Figure S4, S6). With the decision-tree approach, for ex-
ample, our estimated uncertainties average 20.5 Mg C ha™
at the national level. In deforested and dryland regions
harboring very low carbon densities (< 20 Mg C ha™), un-
certainties fall to a level commensurate with that of small
shrubs and grass cover (< 5 Mg C hal) [35].

As a whole, we demonstrate a powerful analytical
chain, from well-measured field plots, to high-resolution
LiDAR, and to satellite and environmental data, that
achieves national-scale carbon stock maps with high fi-
delity and low per-hectare uncertainty. This has not
been possible using field or global satellite approaches
alone. Whereas field-based approaches cannot resolve the
spatial distribution of carbon stocks, global satellite ap-
proaches do so with lower spatial resolution — currently
25 to 100 ha per mapping cell [12,13]. To date, the global
benchmark maps do not provide per hectare or per-pixel
uncertainty, and where they have been compared, the ap-
proaches diverge by up to 100% on any given 25-100 ha
land parcel [36]. Nonetheless, the global approaches do
converge at biome, country and globally-integrated levels
[37], making them valuable for countries still working to-
ward high-resolution carbon mapping with geospatially-
explicit uncertainty reporting.

We note that our error maps should be viewed as esti-
mates. Actual carbon mapping errors can only be truly
assessed with totally independent, direct carbon mass
measurements, which themselves can only be accom-
plished with plot-scale destructive harvests. Until such
time, our estimated errors are reasonable in that they
are derived through a combination of field-plot and
LiDAR-scale validation. In each case, the data used to
estimate errors were completely excluded from the pro-
ject until the validation phase.

The spatial detail provided by our approach opens new
doors to understanding environmental and human controls
over the Earth’s aboveground carbon stocks. Topography,
climate and geologic substrate impart an ecologically
nested set of patterns in ACD [38-41]. That is, the natural
background patterns are far from homogeneous, and in
fact, display geographical variances at multiple, nested
scales. In Panama, this is clearly expressed with elevation
on a regional basis, as well as with slope on a local or
sub-watershed basis. For example, aboveground carbon
stocks are highest in forested areas to the north of the
continental divide, with these regions containing local-
ized carbon-storage hotspots on moderate slope angles
[40]. Superimposed on these non-random, ecologically
nested patterns is the expansive footprint of human ac-
tivity — the overwhelming driver of ACD patterns in
Panama. At the national level, it is clear that vast
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portions of the country, particularly in the south, have
been deforested or degraded. Yet on a landscape scale,
the pattern is more complex, expressing variation in
land-use decisions that co-occur with catenas and
other fine-scale hillslope patterns. These findings be-
come obvious due to the high-resolution mapping
achieved.

The high fidelity of the final carbon map sets Panama
apart from every other country today. At both jurisdic-
tional and international levels, environmental policy and
management can utilize high-resolution carbon maps to
undertake activities on a geospatially explicit basis. As a
result, monitoring and verification reach a new level of
competency, affording more comprehensive actions to
enhance human welfare and environmental protection.
Although United Nations efforts to reduce emissions
from deforestation and forest degradation have been
slow to develop in the international arena, jurisdictional-
scale REDD + activities (as well as voluntary projects) re-
quire high-fidelity carbon maps to raise the per-hectare
value of ecosystem carbon stocks and avoided emissions.
With a high-resolution carbon basemap such as we have
developed for Panama, the technical and financial hur-
dles to monitoring emissions shrink to repeat satellite
mapping from largely free data and automated methods
[11]. Doing so allows for monitoring of carbon losses
from and gains to the carbon basemap using medium to
high resolution optical satellite data such as from the
Landsat series going back to 1982 and continuing today
[29]. This approach was greatly enhanced with the suc-
cessful deployment of Landsat 8 on February 11, 2013;
all Landsat data are free to the global community. More-
over, the European Sentinel satellite series will eventually
provide similar data streams.

Increasing satellite data availability provides strong le-
verage to transfer and scale our approach to other nations
and jurisdictions. The cost of satellite data acquisition,
processing and analysis has recently plummeted, based
mostly upon free data sources and analytical methods
e.g., [42,43], to a level requiring perhaps two to five
trained technicians, depending upon the size and en-
vironmental complexity (e.g., topography, land use) of
the tropical country. A good example is the Peruvian
government, which went from little government-led
deforestation monitoring in 2008 to transparent moni-
toring by 2012 with a small group of geospatially-
trained technicians [44]. Additionally, field plots are
extremely expensive to establish and maintain, for ex-
ample, costing the Carnegie Institution (a non-profit
with no program overhead costs) from $2000-$5000
USD per hectare in basic plot setup and measurement.
Minimizing the use of plots is thus a serious cost consid-
eration, but it must be done tactically from both an
ecological-sampling and a LiDAR calibration-validation
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standpoint. In response to this, Asner et al. [15] developed
more general equations to convert LIDAR measurements
to estimates of ACD for a very wide range of tropical
vegetation types and land-use conditions. Although
this approach has been demonstrably successful in re-
mote regions such as the Colombian Amazon [38],
validation plots remain highly valuable for increasing
accuracy and transparency. Finally, the airborne LiDAR
component is both scalable and cost effective, if
deployed appropriately. First, there are a multitude of
airborne LiDAR providers spread around the world
(e.g., http://www.airbornelasermapping.com/ALMID.html).
It thus becomes the responsibility of the carbon-
mapping technicians (often the same people doing the
satellite monitoring) to direct the LiDAR data collection
according to the more robust and efficient approach
available based on geostatistical and logistical constraints.
For Panama, we selected a systematic aligned sampling
scheme that was highly efficient by crossing the major
ecoregions and land-use conditions arrayed throughout
Panama. Our sampling also precisely overlapped with the
long-term plot network plans of the U.N. Food and Agri-
culture Organization (FAO). Had we only focused on
LiDAR data acquisition for this project, our costs for data
collection and analysis would have been less than
$600,000 USD, or about $1.00 USD per hectare covering
nearly 600,000 hectares for national “inventory”, plus cali-
bration and validation. With airborne LiDAR, there is also
an economy-of-scale effect, whereby larger projects
become much less expensive on a per-area basis. In the
Colombian Amazon [38] example covering a region more
than twice the size of Panama, the cost for airborne
LiDAR acquisition and analysis was about $0.15 USD per
hectare. These, and yet other financial and logistical
issues, will affect the transferability and scalability of
our high-resolution mapping approaches throughout the
world.

Beyond REDD + and other carbon-policy mechanisms,
the utility of high-resolution aboveground carbon maps
within countries remains largely underappreciated at
present. First, vegetation carbon stock is a surrogate for
many other ecosystem services. For example, high-
biomass forests enhance water quality, provide erosion
control, and stabilize water flow through ecohydrological
mechanisms [45]. In other landscapes, including agricul-
tural lands, the often-complex spatial distributions of
woody carbon stocks serve as a habitat quality indicator
for higher trophic species [46]. The geography of carbon
storage is one of the clearest ecological metrics of habi-
tat suitability in fragmented tropical forest landscapes.
Other potential applications for high-fidelity carbon
mapping at the national scale will continue to be identi-
fied as the analytical approaches reported here further
improve and flourish in the years ahead.
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Methods

Study region

The Republic of Panama provides a unique opportunity
to develop and test geospatially explicit approaches for
estimating aboveground carbon density (ACD) at mul-
tiple geographic scales. A combination of geology, top-
ography, regional climate and a storied land-use history
have resulted in a complex mosaic of vegetation types
ranging from open shrublands to dense tropical forests
[47,48]. Steep spatial gradients of vegetation type and
cover exist throughout the country, but particularly
across the continental divide, from the wet northern
Caribbean coast to montane cloud forests to drier and
highly deforested Pacific drylands (Figure 1).

Overall design

We developed national spatially explicit maps with un-
certainties of ACD at 1-ha resolution. To do so, the pro-
ject was carried out in three major activities: (i) field
plot measurement and ACD estimation for LiDAR cali-
bration and validation; (ii) airborne LiDAR data acquisi-
tion and processing; and (iii) national upscaling from the
LiDAR coverage using two comparative modeling ap-
proaches with the same satellite data. Airborne LiDAR
sampling was carried out in January-February 2012 using
an approach based on systematically aligned transects of
1.5 km swath width (Figure 1a). These transects were se-
lected to match a planned national forest inventory plot
network, to be installed in the coming years by the
United Nations Food and Agricultural Organization
(FAO). Extra LiDAR coverage was acquired in areas
prone to cloud cover and whenever weather and time
permitted. The LiDAR data were converted to vegetation
top-of-canopy height (TCH) at 1-ha resolution, and then
modeled against field plot-aggregate estimates of ACD.
A large network of field plots was used for calibrating or
validating relationships between plot-scale ACD and
LiDAR TCH (Additional file 2: Figures S1 and S2). The
derived LiDAR-scale ACD maps were then integrated
with satellite-based measurements of vegetation cover
and condition, topography and precipitation to model
carbon stocks at 1-ha resolution at the national level
(Figure 1b, Additional file 2: Figure S3). The integration
of LiDAR-scale ACD and satellite data was accomplished
using two modeling approaches — a decision tree algo-
rithm and regional stratification.

Plot-based carbon stocks

We integrated field plot data from five distinct ecotypes in
Panama (Additional file 2: Figure S1, Additional file 1:
Table S1): We calibrated our LiDAR data with field-based
carbon estimates from (1) old-growth moist forests on
Barro Colorado Island [BCI; 40] and (2) secondary moist
forests within Agua Salud [AS; 40, J. Hall and M. van
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Breugel, unpublished data, 49], and subsequently com-
pared the predictions of this model to additional field-
based estimates of carbon in (3) mixed old-growth and
old secondary wet forests at Fort Sherman (SHRM), (4)
dry secondary forests on the Azuero Peninsula (AZ; J. Hall
and M. van Breugel, unpublished data) and (5) mangrove
forests in Colon (COL) [49].

Carbon stock estimation from field data was made
using a consistent methodology across all plots; an ac-
counting of allometric models is provided in Additional
file 1: Table S2. We limited measurements to standing
woody stems > 10 cm in diameter. For allometric estima-
tion of aboveground biomass, we applied the general
framework of Chave et al. [25] “model 1”7, which includes
input variables for height and wood density, and we used
48% of dry biomass as the conversion to carbon units
[33]. Although a localized secondary forest allometry is
available for AS [50], the model lacks a height input
variable. While simple models are more parsimonious
from a statistical point of view (i.e., when fitting a
model), the models subsume height variation into the
coefficients, making them more prone to bias in another
region if the relationship between diameter and height
varies from the built-in assumption of the coefficients.
Recent analysis of the behavior of allometric models in
the tropics suggests that height is essential as an input
variable; without it, large over-estimations are likely [51].
We used the Chave et al. approach combined with a lo-
cally constructed diameter-to-height model for all plots
in BCI, AS, and SHRM. In the case of AS, we found that
the results of the Chave et al. model 1 approach were
consistent to those of Breugel et al. [50]. Note that
Breugel et al. [50] previously found that Chave et al
model 2 — which also lacks a height input variable —
overestimated carbon stocks in AS.

Inventory-based height information was not available
for either the AZ or COL validation plots, and thus we
utilized the LiDAR data to constrain the maximum pos-
sible diameter-to-height relationship and minimize over-
estimation [sensu 51]. Specifically, we fit the maximum
height within the LiDAR data for each plot to the max-
imum measured diameter for the same plot in the field
to obtain an estimated height-diameter allometry for
inclusion in the biomass equations (Additional file 2:
Figure S2). We viewed this as a conservative method
to constrain our field-estimated carbon stocks for trop-
ical dry forests and mangroves in Panama. This step
was essential to prevent unrealistically high height esti-
mations for dry and mangrove trees that would result
from the application of our existing Panama height to
diameter relationships [51].

For wood density, we used local information first
(e.g., species-specific wood density samples taken in the
field), followed by increasingly general approaches with
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decreasing taxonomic resolution as needed from the
Chave et al. [52] database. Ultimately, absent a wood dens-
ity value for a species or genera, a default regional wood
density value of 0.56 for Central America was used [52].

We note that allometry-based ACD estimation, whether
done in the field or from LiDAR, is not the same thing as
measuring carbon mass [4]. Yet, allometry is one of the
most conserved properties in nature [26], and until
whole-plot harvests enable direct measurement of carbon
stock, allometry will continue to play the major role in
carbon stock estimation and mapping. We also note that
any departures from allometric-estimated carbon stocks in
real forests will affect both field- and LiDAR-based carbon
estimation in parallel [34].

LiDAR data

For calibration, the LiDAR data were collected using the
Carnegie Airborne Observatory (CAO) Alpha [53] or
AToMS [54] sensor packages in 2009 and 2012, respect-
ively, with data collection and analysis methods applied
consistently (Figure 1). Both the Alpha and AToMS
LiDAR sensors are full waveform, but the work presented
here relied only on the discrete return data of up to four
returns per pulse in order to make the results applicable
to a much wider range of LiDARs currently in operation
throughout the world. Both CAO LiDARs were operated
at 2,000 m above ground level with 1.1 m spot spacing, a
30° field of view, and a pulse repetition frequency of 50
kHz, for which the aircraft maintained a ground speed
of < 110 knots. Both LiDARs have a laser beam diver-
gence of 0.56 mrad (1/e). Despite the consistency of
data collection parameters, the Alpha and AToMS Li-
DARs differed in laser diode power and laser receiver
sensitivity. For this reason, the AToMS LiDAR proved
much more sensitive to the internal 3-D architecture
of any given forest canopy.

Although Asner et al. [15] previously compared re-
gions using LiDAR-derived mean canopy profile height
(MCH), we used top-of-canopy height (TCH) in this
study. We did so for two reasons: (1) while TCH is avail-
able for all airborne and spaceborne LiDARs, MCH is
not available from many systems, and (2) MCH is much
less generalized across sensor types than TCH, owing to
canopy penetration differences [16]. TCH was deter-
mined by constructing ground and surface digital eleva-
tion models [55], and subtracting them to determine
height at 1.1 m resolution. The average of all 1.1 m
pixels for which the center of each pixel was contained
within a plot footprint was used as a measure of TCH
for each field plot.

We used maximum likelihood analysis to fit a power-
law model between field-estimated carbon stocks and
LiDAR-measured forest height. The fit was performed on
the un-transformed TCH and ACD values using a non-
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arithmetic error term to account for heteroskedasticity;
this method is analogous to fitting a linear model to the
log-transformed TCH and ACD data, but avoids the need
for back-transformation [27]. The model was fit using
young secondary forest plots from Agua Salud and mature
moist forest plots from Barro Colorado Island and LiDAR
data from 2009: ACD = 0.359 x TCH'”%’%, resulting in an
adjusted R*=0.86 and RMSE=17.6 Mg C ha”. The
model was subsequently validated with 91 additional plots
from dry forests in Azuero, older secondary forests in
Gigante, mature wet forests at Sherman, and mangrove
forests in Colon together with LiDAR data from 2012,
yielding an adjusted R* = 0.92 and a RMSE (predicted ver-
sus observed) = 10.6 Mg C ha™ (plot details in Additional
file 1: Table S1). That the validation model would perform
better than the calibration model is not surprising; plot
sizes were generally higher in the validation dataset,
and previous work has shown that errors approach
10% at 1-ha plot size [17,22].

Mangroves showed a small under-prediction by the
model (Figure 2b); while the limited number of plots
precluded a diagnosis at this time, higher wood density
is partly responsible. The results are consistent with
Asner et al. [15], which found that variation in wood
density and forest stocking (basal area) for the same
LiDAR-measured height was primarily floristic and bio-
geographic in origin, producing modest disagreement
only at very broad scales (e.g., Hawaii versus the Neo-
tropics), rather than within a region.

Satellite data

We produced a dry-season composite using 158 Landsat
5 and Landsat 7 (SLC-off) images from the months of
December through March, for the years 2008-2012
(Figure 1b). After all images were separately processed
by CLASlIite [42] to mask clouds and apply radiometric
correction, we applied a pixel-mosaicking algorithm
for a given tile (path-row). From the available pixels at
the same coordinate, we retained those within 70% of
the mean brightness, and selected the pixel exhibiting
the median Normalized Difference Vegetation Index
(NDVI). The corresponding images were processed
through the CLASIlite spectral mixture model, which
yielded fractional cover of photosynthetic (PV), non-
photosynthetic vegetation (NPV), and bare substrate
within each image pixel. No data were available for
some of the wettest regions in Panama (mainly ridge
tops in the western part of the country), so we
backfilled these areas with CLASlite results derived at
course resolution using NASA Moderate Resolution Im-
aging Spectroradiometer (MODIS) data. The MODIS
backfilling covered a total of 388,194 ha, or 5.2% of the
country. The MODIS data were compiled over the year
2011 using daily MODIS data combined from the NASA
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Terra and Aqua satellite sensors, with bidirectional re-
flectance distribution function (BRDF) corrections and at-
mospheric compensation [56]. Prior to backfilling, the
MODIS data were calibrated against the Landsat data
using a linear transformation of reflectance values based
on co-occurring Landsat and MODIS pixels (Additional
file 1: Table S3).

We mosaicked two 90-m resolution NASA Shuttle
Radar Topography Mission (SRTM) tiles to use as pri-
mary elevation data. From this mosaic, we used topo-
graphic modeling (3x3 kernel) to generate estimated
slope and aspect at both 90-m resolution and 1-km
resolution, with the latter generated from pixel-aver-
aged SRTM elevation at 1-km resolution. Subsequent
correlation analyses revealed that while higher reso-
lution slope data were more predictive for LiDAR-
observed carbon estimates than lower resolution slope
data, 1-km aspect was more predictive than higher
resolution aspect.

We used the most recent mean annual precipitation
(mm yr') and seasonality (number of months yr* with
rainfall below 100 mm) data from the NASA Tropical
Rainfall Measuring Mission (TRMM) as of March 1,
2012 as additional inputs to the models for upscaling
LiDAR data to the national level. Compared to Landsat
and SRTM data, TRMM data are coarse (0.4° resolution)
with a low signal to noise ratio. Thus, we generated
smooth precipitation and seasonality estimates by applying
a 5x5 median filter to each product. For RandomForest
modeling (see below), we used the original climate data for
calibrating the carbon model, and the smoothed datasets
for mapped outputs. This option was not available for
stratification, and thus we used the original climate data
for both model calibration and mapping.

National mapping

The LiDAR data collection effort was partitioned into
three segments: (1) systematically aligned transects at
the national scale; (2) additional flight lines as time and
weather conditions allowed; and (3) large contiguous
blocks for calibration and validation activities. All flights
were conducted between 3 January 2012 and 1 February
2012 using CAO AToMS.

Twenty parallel LiDAR flight lines spaced 30 km apart
were collected running on precise 0° true North azimuths
(Figure 1a). Based on the width of the country of Panama
at each flight line, our transects ranged from approxi-
mately 60 to 200 km in length. The swath of each flight
line, based on LiDAR settings described earlier, was 1.5
km. After cloud masking, the total systematically aligned
data set covered 177,514 hectares, or 2.4% of the Panama’s
land surface. As time and weather permitted, we added
flight lines in areas deemed otherwise difficult to map due
to persistent winds, clouds, and other factors (Figure 1a).
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These data covered a total area of 127,992 ha (an add-
itional 1.7% of Panama).

We selected three large mapping areas containing field
plots for use in either the LiDAR-to-ACD calibration or
for purposes of regional mapping validation (Figure 1a).
The total area of these polygons was 86,351 ha, and cov-
ered ecosystems ranging from montane wet forest, to
lowland moist forest, to mesic and dry woodlands,
shrublands and grasslands.

We stacked all LIDAR data and satellite input variables
using ENVI image analysis software (Additional file 2:
Figure S3). LiDAR, CLASlite, and SRTM datasets were
aggregated to 1-ha resolution using pixel averaging,
while TRMM data were resampled to 1-ha resolution
with nearest neighbor selection. Thus, the 1-ha reso-
lution data represent complete unmasked pixels for all
data inputs in their native resolutions. Using LiDAR-
derived carbon stocks as the dependent variable, we used
two techniques to extend our results to the national
level: stratification [11] and RandomForest machine
learning [13]. Additional file 2: Figure S4 highlights in-
terrelationships among the various input variables and
LiDAR-derived ACD.

Stratification involves the subdivision of a region into
unique classes, or strata, and the assignment of me-
dian, LiDAR-derived carbon estimates to those classes
(Additional file 1: Table S4). The stratification was
based on the SRTM, TRMM and CLASlite data, which
produced 2039 classes. Of these, a clear majority of
classes by total area (99.7% of Panama) were sampled
with at least 1% LiDAR coverage (Additional file 3:
Dataset S1). The remaining classes (0.3% of Panama) were
reduced to simpler groupings based solely on PV —the
variable most strongly related to carbon stocks in the pre-
liminary analysis. Median carbon stock estimates for each
class (as derived from LiDAR data) were then applied to
all pixels within that class on nation-wide map.

RandomForest v4.7 (http://cran.r-project.org/web/packages/
randomForest/indexhtml) is a non-parametric machine
learning algorithm that produces a “forest” of decision
trees based on random inputs from the training data
[57]. In this case, we ingested an ordered sample of
29,508 ha, representing every 10th pixel of 1-ha reso-
lution LiDAR coverage (Additional file 2: Figure S5).
The ensemble tree was then selected upon which to
base future predictions (Additional file 2: Figure S6,
Additional file 4: Dataset S2). With continuous data,
such as in this case, a regression-type tree was con-
structed. Because our LiDAR sampling was systematically
planned, providing comprehensive spatial coverage across
Panama, we allowed distance parameters (i.e., pixel pos-
ition) to enter into the RandomForest algorithm in
addition to our eight satellite variables. This had the effect
of reducing large-scale spatial autocorrelation of modeling
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errors, although not eliminating them. This option was
not tractable for the stratification approach because dis-
cretizing position variables (and intersecting them with
environmental variables, as discussed above) resulted in
an unreasonable number of unique classes.

To visualize how RandomForest ingests data and pro-
duces a predicted carbon map, we simulated the inges-
tion of a smaller amount of data (every 60th pixel)
repeatedly to produce an animation (Additional file 5:
Video S1). In the 24-fps video, each frame represents the
accumulation of an additional 3 to 6 ha (depending on
transect width) of LiDAR-based carbon estimates by the
Carnegie Airborne Observatory (CAO). With each new
data segment added to a cumulative dataset, RandomForest
was re-run for each frame, producing a nation-wide simu-
lated carbon map. The legend of the map corresponds to
that in Figure 3; the inset shows the actual position of
the plane during the flight campaign and the red dots
show the magnitude of the LiDAR-estimated carbon
stock at the plane’s position. As the CAO accumulates
LiDAR data, the RandomForest model stabilizes on a
final solution that incorporates all available LiDAR ob-
servations. The simulation is intended for visualization
purposes only.

Error

Error estimation in LiDAR-assisted mapping of ecosys-
tem carbon is evolving rapidly, although several issues
remain unresolved. The categories of errors are generally
known; within the framework of LiDAR-assisted carbon
mapping, sources of error include: (1) measurement of
tree properties in the field (e.g., diameters, heights); (2)
field-plot level predictions of carbon stocks from tree
measurements and allometric models, including failure
of allometric models to estimate real carbon stocks, and
including plot size-edge effects [4]; (3) measurements by
LiDAR remote sensing (e.g., integrated canopy height),
including spatial and temporal plot co-location errors;
(4) LiDAR-scale errors in predicted carbon stocks outside
of field plots; (5) national- (or regional-) scale measure-
ments of forest cover, elevation, etc.; and (6) prediction er-
rors outside of LiDAR data.

These errors can be broken down into three basic
sources, each depending on the accuracy and precision
of a set of measurements and associated model predic-
tions at the field-scale, LiDAR-scale, and national-scale.
All of the above errors also depend on the spatial reso-
lution of analysis, which varies widely across input vari-
ables used to achieve carbon mapping.

We follow previous LiDAR mapping studies at the
global scale in excluding errors of category 1 and 2 (see
above) in our map of error estimates [12,13]. Measure-
ment errors of trees in the field are generally thought to
make a vanishingly small contribution at the plot level
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[31,58], while allometric model errors in a single region
are thought to be in the range of 10 to 30% of plot-scale
carbon stock and can conceivably exceed this [25]. Mov-
ing forward, real carbon stock (i.e., that attained through
direct harvest and weighing) will become the standard
against which to assess the performance of either field-
based or remote-sensing based carbon estimates [4]. At
present, however, allometric errors applied to field data
currently represent a “known unknown”, and thus field-
estimated carbon stock (i.e., by allometric models) is
currently considered to be the standard unit against
which to compare subsequent model estimates [17,59].
This is particularly the case given the near universal reli-
ance on a single family of tropical forest allometric equa-
tions (i.e., Chave et al. 2005 model 1). As remote-sensing
assisted carbon mapping becomes the basic tool with
which to assess carbon stocks, this lingering uncertainty
will be addressed on a regional or ecosystem level with
direct harvests and direct measurements of carbon
stocks. At present, however, these errors will in principle
affect field- and remote sensing-based carbon account-
ing in concert. Thus, any departures of Panamanian eco-
system carbon stock at the plot level from that predicted
by the generalized Chave et al. (2005) framework used in
this study would not be detectable even if every tree in
Panama was measured using traditional field inventory.

For the remaining sources of error, we assessed “ob-
served” errors using a conservative approach of setting
aside validation data that was never used for LiDAR cali-
bration or carbon mapping purposes (i.e., as opposed to
iterative or leave-one out techniques). In our assessment
of error, we do not rely at any point on the results of
calibration model fits (e.g., RandomForest self-reported
variance explained). Instead, we rely entirely on com-
pletely separate data left out of the original analysis. We
use this data to determine how well our mapping effort
performed. We considered observed errors in two steps:
we considered what RMSE (predicted v. observed) was
produced by the application of our LiDAR-to-carbon
model in validation field plots, and what RMSE (pre-
dicted v. observed) was produced by our regional
decision-tree model in the LIDAR samples used only for
validation.

Errors in LIDAR measurement and prediction: We cal-
ibrated LiDAR using 57.7 ha of field plot data, setting
aside 48.4 ha for validation purposes. Using validation
plots (Figure 2b), we estimated errors of 10% (RMSE) at
1-ha plot size, consistent with previous results from
other LiDAR studies at 1-ha resolution (Mascaro et al.
2011b, Zolkos et al. 2013).

Errors in satellite- (national-scale) measurement and
prediction: We calibrated our national-scale modeling
using 305,506 ha of transect and other flightline LiDAR
data, setting aside 86,351 ha of LiDAR data with which
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to validate national-scale aboveground carbon model-
ing, both in a subset of particular ecoregions of inter-
est (Figure 5, Additional file 1: Table S5), and within
the entire validation area. Within the entire validation
area, 62% of carbon stock variation was explained by
RandomForest modeling (Additional file 2: Figure S7
and S8). Quantile regression indicated that RandomForest
errors increased with increasing carbon stock (ie., errors
were heteroskedastic), both in terms of variance (red lines
in Additional file 2: Figure S7) and a slight amount of bias
(short black lines compared to the 1:1 line in Additional
file 2: Figure S7). We fit a 3rd-order polynomial to the
RMSE pattern to characterize these errors (Additional
file 2: Figure S9), and applied this model to the predicted
carbon stock map to estimate regional mapping errors.

Mapping of error estimates: For areas directly map-
ped by LiDAR, we applied only LiDAR-to-carbon er-
rors at the pixel level (i.e., the direct LiDAR estimate
of carbon being known with greater confidence for
these pixels). For areas outside of direct LIDAR map-
ping, we applied both LiDAR-to-carbon and national-
scale errors to the remaining pixels, by propagating the
square root of the sum of each squared error value for
each pixel according to:

€National(LiDAR pixel) = ELiDAR

— 2 2
€National(other pixel) = \/SLiDAR + €DecisionTree

In doing so, we assumed that LiDAR calibration and
regional mapping errors were independent.

Our error estimates, while informed by extensive val-
idation data both in the form of field plots and LiDAR
validation samples, should be viewed as initial estimates,
rather than real measures of uncertainty. Refinements in
uncertainty will come from improving our understand-
ing of allometric equations used to estimate biomass [4]
and chemical analyses of biomass carbon content [33].
Our analysis may also be improved through analytical
modeling of errors (ie., model-based inference) pro-
duced by both the LiDAR-to-carbon and national-scale
models [60], as well as an improved understanding of
spatial autocorrelation of errors. We explored simultan-
eous autoregressive modeling as a third upscaling tech-
nique (e.g., [41]), but at present the approach remains
too computationally intensive to operate over an area of
this size.

Additional files

Additional file 1: Tables S1-S5. This file provides tables on field plots,
allometrics, national modeling, and validation.

Additional file 2: Figures S1-S9. This file provides figures on field plot
location, tree diameter-to-height relationships, satellite data inputs,
national-scale modeling results, and validation results.

Additional file 3: Dataset S1. Stratification data.
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Additional file 4: Dataset S2. RandomForest data.

Additional file 5: Video S1. This file provides a video-based
visualization of how the national-scale modeling ingests and responds to
increasing amount of LiDAR-assisted carbon density estimation.
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