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Tropical forests convert more atmospheric carbon into biomass
each year than any terrestrial ecosystem on Earth, underscoring
the importance of accurate tropical forest structure and biomass
maps for the understanding and management of the global
carbon cycle. Ecologists have long used field inventory plots as
the main tool for understanding forest structure and biomass at
landscape-to-regional scales, under the implicit assumption that
these plots accurately represent their surrounding landscape.
However, no study has used continuous, high-spatial-resolution
data to test whether field plots meet this assumption in tropical
forests. Using airborne LiDAR (light detection and ranging)
acquired over three regions in Peru, we assessed how represen-
tative a typical set of field plots are relative to their surrounding
host landscapes. We uncovered substantial mean biases (9–98%)
in forest canopy structure (height, gaps, and layers) and above-
ground biomass in both lowland Amazonian and montane Andean
landscapes. Moreover, simulations reveal that an impractical num-
ber of 1-ha field plots (from 10 to more than 100 per landscape) are
needed to develop accurate estimates of aboveground biomass at
landscape scales. These biases should temper the use of plots for
extrapolations of forest dynamics to larger scales, and they dem-
onstrate the need for a fundamental shift to high-resolution active
remote sensing techniques as a primary sampling tool in tropical
forest biomass studies. The potential decrease in the bias and un-
certainty of remotely sensed estimates of forest structure and bio-
mass is a vital step toward successful tropical forest conservation
and climate-change mitigation policy.
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Understanding spatial and temporal variation in forest struc-
ture and biomass is central to the prediction of tropical

forest dynamics. Forest structure is an important determinant of
light use, turnover, and net primary productivity (1–3). As a re-
sult, these functional processes, which operate at leaf-to-land-
scape scales, drive the conversion of more atmospheric carbon
each year into tropical forest biomass than any other terrestrial
ecosystem on Earth (4). Maps of tropical forest aboveground
biomass (AGB) are thus considered vital for forest conservation
and climate change mitigation policy (5) and for understanding
the role that tropical forests play in the global carbon cycle (6).
However, spatially explicit maps of AGB in Amazonian forests
have rarely agreed more than is expected by chance (7). Even the
most recent pan-tropical AGB maps using satellite remote
sensing and similar methodologies have substantial disagreement
between one another (8) as well as with respect to available field-
plot network estimates (9). Serious disagreement exists over our
understanding of landscape and regional carbon dynamics (10,
11) because a lack of spatial and temporal data necessitates the
use of statistical models to understand the role of disturbance
and forest structure at these scales.
At the core of all AGB or forest structure maps are field in-

ventory plots (typically ≤1 ha in size) that are used to estimate
forest structural variables (such as tree basal area and height,
canopy gaps, and layering). Tree basal area and height are used

in allometric models to estimate AGB and when combined with
temporal censuses of the same plots can be used to assess carbon
dynamics in forest stands (12). However, to generate landscape-
to-regional-scale estimates some studies simply extrapolate plot-
based AGB estimates to the total forest area thought to be
represented by the plots (13, 14), or they use simple spatial in-
terpolation methods such as kriging (15). Other studies integrate
AGB estimates from field plots with remote sensing data to
generate landscape and regional estimates of forest AGB and
carbon fluxes (6, 16–18). Even as remote sensing data become
widely available field plot-based estimates of AGB and structure
will remain important for calibrating and validating large-scale
remote sensing studies (19, 20).
Regardless of the approach used to estimate forest structure,

AGB, or carbon dynamics at landscape and broader scales, an
underlying and fundamental assumption is that field plots (ca.
1 ha scale) are an unbiased sample of the landscape (ca. 102- to
104-ha scale) (21–23). In the case of Amazonia, fewer than
500 field inventory plots are often used to represent more than
109 ha of forest (9). However, practical constraints affecting
the placement and size of field plots often result in systematic
sampling biases (24, 25). These constraints include the physical
characteristics and accessibility of the forest, the scientific ratio-
nale for the plot, and the labor-intensive nature of field sampling.
As landscape-scale heterogeneity increases, plot placement be-
comes increasingly challenging, and yet it greatly affects whether
plot-derived variables are representative of a landscape in question.
Many studies have quantified biases and errors related to the

number and size of field plots (26–29), within-plot sampling (30),
or a combination of both (21–23, 31). Others have used models
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to assess whether existing field-plot networks sufficiently repre-
sent forest disturbance dynamics at regional scales (10, 11, 22,
31). However, very few attempts have been made to verify
a fundamental assumption that landscape representativeness
holds true for field plots in tropical forests, with only two studies
conducted in Neotropical forests. Anderson et al. (32) evaluated
the sampling bias due to the location of several field plots in the
RAINFOR network (33) within terra firme and floodplain forest
landscapes. By scaling plot-level estimates of AGB to the sur-
rounding landscape weighted by the proportional area of each
forest type classified from Landsat images, they found a 3%
average bias from five RAINFOR plots in Peru. However,
Landsat only provides information on forest cover and, to some
extent, forest type, so it is not surprising that a forest plot would
well represent a forest landscape in such satellite imagery. In
contrast, Chave et al. (21) found about a 10% bias in AGB
among field plots in the Panama Canal watershed but relied on
data from nearby field plots as the “landscape” for comparison.
Although a few previous studies in the tropics have used re-

mote sensing to develop landscape-scale maps of canopy struc-
ture and biomass (e.g., 20, 34–36), no study has assessed whether
field plots produce unbiased estimates of these variables at
landscape scales. Airborne LiDAR (light detection and ranging)
can resolve spatial variation in forest structure, and it can pro-
vide high-fidelity biomass estimates at high resolution over the
large areas that field plots intend to represent (37). Biases re-
lated to spatial scale can thus be uniquely quantified by com-
paring airborne LiDAR estimates of forest structure and
biomass derived from within field-plot boundaries to those from
the surrounding host landscape—nearby forest of similar sub-
strate, elevation, and forest type.
We investigated the degree to which typical permanent field

plots (≤1 ha) accurately represent the forest structure and bio-
mass of their host landscape in Amazonian and Andean forests.
The Carnegie Airborne Observatory-2 collected airborne LiDAR
data over three distinct forest regions encompassing 10 host
landscapes along an elevation gradient in Peru. Four lowland
and six montane host landscapes (each ca. 500–1,200 ha) were
conservatively delimited by similar forest substrates (for lowland
regions) or elevation (for montane regions) using LiDAR-
derived topographic data (Fig. 1 and Fig. S1). Forest struc-
tural variables (tree height, canopy gaps, and layers) and above-
ground carbon density (biomass is 48% carbon) were calculated
within each field-plot boundary and the surrounding host land-
scape. All variables were calculated directly from the LiDAR
data, isolating the effect of spatial scale between field plot and
host landscape under the assumption that airborne LiDAR pro-
duces perfectly accurate estimates of each variable (i.e., ignoring
any allometric scaling errors). We asked the following questions. (i)
How biased are estimates of Amazonian forest structural variables
derived from 1-ha field plots compared with those derived
throughout their host landscapes? (ii) Are there landscape-scale
biases in plot-based estimates of aboveground biomass in Ama-
zonia? (iii) When estimating forest structure and biomass at the
landscape scale, what is the error associated with a 1-ha field-
plot sampling approach and how many field plots are required to
achieve reliably accurate estimates of landscape AGB?

Results
Landscape Structure. In both the lowland Amazon and montane
tropical Andes 1-ha field plots often displayed large but highly
variable biases in representing forest structure and biomass at
a landscape scale (ca. 102–104 ha). Even when a forest structural
or biomass variable from a field plot approached the mean of its
host landscape the landscape probability density distributions of
those forest variables were often nonnormally distributed, re-
vealing the difficulty of using a single plot to approximate the
surrounding landscape. The high coefficients of variation (CVs)

of these host landscape distributions also reveal substantial
landscape-scale heterogeneity (and thus sampling error) for all
forest variables presented and summarized here.
Plot-based bias in mean top-of-canopy height (TCH) averaged

11% in lowland and 14% in montane landscapes (Table 1).
Mean TCH density distributions of the host landscapes tended to
be negatively skewed or multimodal with the exception of one
lowland (JEN_11) landscape and one montane (TRU_01) land-
scape (Fig. 2A). The average host landscape CV for mean TCH
was moderate at the lowland landscapes (13%) but more than
doubled to 28% in the montane landscapes (Table S1).
Field plot-based P:H ratio (i.e., forest canopy architecture, see

Methods) estimates showed an average bias of 15% in the low-
land landscapes but extreme biases averaging 98% were found in
montane landscapes (Table 1). All density distributions of land-
scape P:H ratio were skewed with the exception of the two lowland
erosional terra firme (ETF) landscapes (Fig. 2B). The average CV
for P:H ratio at the lowland landscapes was 24% but increased
substantially to 83% in montane landscapes (Table S1).
The canopy gap size-frequency distribution scaling coefficient

λ of the field plots showed moderate bias (9%) in lowland
landscapes but increased to 20% throughout the montane
landscapes (Table 1). The individual plots tended to have canopy
gap λ values near the center of the distributions of their host
landscapes (Fig. 2C), with the exception of the three landscapes
at the highest elevations. However, the density distributions of λ
tended to be nonnormally distributed. The average CV throughout
lowland landscapes was 20% but was slightly suppressed at 16% in
the montane landscapes (Table S1).
Biases in plot-based canopy gap density (gaps per hectare)

were large for both lowland (74%) and montane (64%) land-
scapes (Table 1). Canopy gap density was not well represented by
the field plots for any of the landscapes, and host landscape
distributions were positively skewed or multimodal (Fig. 2D).
Average CV was very high (100%) for canopy gap density at
lowland landscapes and lower but still high (75%) at montane
landscapes (Table S1).
Canopy gap size of the field plots also showed large bias for

both lowland (47%) and montane (66%) landscapes (Table 1).
Host landscape distributions are extremely positively skewed for
canopy gap size at all locations except for the two lowland ETF
landscapes (Fig. S2). Average CV for canopy gap size was
extremely high for both lowland (198%) and montane (160%)
landscapes (Table S1).
Maximum TCH, canopy layers, upper canopy gap λ, upper

canopy gap density, and upper canopy gap size of the field plots
all showed similar patterns of average bias and CV for both
lowland and montane landscapes (Tables S2 and S3). Notable
exceptions were the smaller bias in field-plot lowland upper
canopy gap density (24.1%) and lowland upper canopy gap λ
(6.8%). The bias in the number of canopy layers was similar
between lowland (29%) and montane (25%) landscapes.
Vertical canopy profiles in the lowland field plots generally

tracked those of their host landscapes (Fig. S3 A and B). How-
ever, in the montane landscapes the canopy architecture of the
field plots strongly biased the representation of forest canopy
volume structure to higher canopies than in their host landscapes
(Fig. S3C). The downward shift in canopy volume with increasing
elevation was not tracked well by the field plots, indicating a bias
in any field-plot sampling of montane landscape canopy archi-
tecture. This is reflected in the large jump in P:H ratio bias be-
tween lowland and montane landscapes.

Forest Carbon. LiDAR-estimated aboveground carbon density
(EACD) accurately and precisely predicted field plot-based
EACD at both lowland and montane locations (Fig. S4). The low
bias (2.7 Mg C·ha−1) and RMSE (6.0 Mg C·ha−1), along with an
adjusted R2 of 0.95, validates the use of universal LiDAR-
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derived EACD (19) across these Andes-to-Amazon landscapes.
When EACD was modeled and mapped in each landscape grid
cell we found that the field plots rarely represented EACD for
each host landscape (Table 2 and Fig. 3A). In fact, all but two
plots produced biases ≥10%, and almost always in the direction of
overestimating EACD (Table 2 and Fig. 3B). The average CV for
the lowland landscapes was 20% and was 32% for the montane
landscapes (Table 2). This high heterogeneity can be viewed when
EACD is mapped across the lowland landscapes (Fig. 4).

Landscape Sampling Bias, Error, and Sample Size. Mean forest
structural and biomass values of the landscape grid networks
(i.e., 1-ha cells) closely approximated those of the ungridded mean

landscape (Table S4). The only exception was the P:H ratio in both
lowland (32% bias) and montane (63% bias), in which all landscape
grid networks underestimated the P:H ratio of the host landscape.
Mean TCH, canopy gap λ, canopy gap size, and LiDAR EACD
biases ranged from 2 to 6% in both lowland and montane land-
scapes. Canopy layers, upper canopy gap λ, and upper canopy gap
size also showed low to moderate biases (Table S4). Average CV
values for the grid networks were 10% or greater for all variables at
both lowland and montane landscapes (Tables S1 and S3).
On average, a total of 44 lowland and more than 85 montane

1-ha field plots are needed to reliably (i.e., a probability of 0.9)
estimate EACD to within 90% of the actual landscape mean
value (Fig. 5B and Table S5). To achieve an estimate that is 95%
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Fig. 1. Top-of-canopy height (TCH) showing the three study regions: (A) Jenaro Herrera, (B) Tambopata, and (C) Kosñipata in Peru. Descriptive information for each
landscape is provided in Table S6. Lowland landscapes are shaded in green and differentiated in B by outlining each host landscape with a different color. Montane
landscapes are colored by elevation, with zoom insets for detail using the same scaling as inA and B. The location of the 1-ha field inventory plots is shown in red with
black arrows for easier identification. Discontinuities in the montane host landscapes are due to gaps in the LiDAR coverage, whereas discontinuities in the lowland
host landscapes result from the narrow elevation ranges used to delineate each forest substrate and the removal of grid cells near water features.
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accurate, those amounts increased to an average of more than 85
field plots per lowland and more than 100 field plots per mon-
tane landscape (Fig. 5A and Table S5). At a lower (80%)
threshold accuracy, an average of 12 field plots and 27 field plots
are needed per lowland and montane landscapes, respectively
(Fig. 5C). The most homogenous landscape (JEN_11) with a CV
of 9.5% for EACD requires 10 1-ha field plots to estimate its
host landscape EACD to an accuracy of 90%. For more het-
erogeneous landscapes such as TRU_08 (EACD CV of 38.1%)
over 100 1-ha field plots are needed to estimate its host land-
scape EACD to an accuracy of 90%.

Discussion
Forest science is increasingly being called upon to provide ac-
curate, large-scale estimates of tropical forest carbon stocks
and structure for use in conservation and resource policy de-
velopment and for understanding ecosystem function and change
over time. Field plots are used, sometimes in combination with
remote sensing data, to produce these estimates. Using airborne
LiDAR to compare forest structural variables and aboveground
biomass derived from field plots to those derived from their host
landscapes, we found substantial biases (9–98%) in field-plot
data that should restrict their use in extrapolations to landscape
scales. These biases were present in both lowland Amazonian
and montane Andean landscapes and were found across all forest
variables measured.
The largest biases were found in the number and size of forest

canopy gaps (47–74%), which are direct expressions of tree
mortality, damage, and regrowth and play integral roles in plant
community structure and forest carbon storage (3, 38, 39). Our
results suggest that the use of canopy gap data from field plots is
invalid for drawing conclusions of landscape-scale canopy gap
processes. Although not as severe, the size and directionality of
bias in canopy gap λ (9% lowland vs. 20% montane) may
nonetheless result in incorrect interpretations about the size of
disturbance events in lowland and montane landscapes. Thus,
field plot-based estimates of canopy gap-size frequency dis-
tributions likely will lead to erroneous estimates of forest carbon
loss via disturbance (40).
We found that aboveground carbon stocks are often system-

atically overestimated—by as much as 29% in montane and 26%
in lowland forests—using field plots compared with the landscapes

hosting those plots. A recent synthesis of biomass estimates
from tropical montane forest plots concluded that these forests
hold a substantial and widely unrecognized amount of carbon
(41). The highly heterogeneous distribution of carbon within
host landscapes (Fig. 4) illustrates the difficulty in extrapolat-
ing individual 1-ha estimates to larger scales. This underscores the
challenge and major limitations of using field plots as “truth”
in comparisons with remote sensed-assisted maps of forest
carbon stocks (9).
The average bias of each forest structural variable yields

a general understanding of how field plots represent the land-
scape. However, examining where an individual field plot falls
inside the host landscape distribution often reveals further bias.
Individual field plots can approximate the mean value of the host
landscape, and when the distribution of that landscape-level
variable is normal a 1-ha field plot can serve as a viable repre-
sentative (e.g., JEN_11 in Fig. 2A). However, the distribution of
most forest structural properties, as well as biomass, is often
nonnormal with skewed or multimodal distributions. As a result,
a large number of field plots would be required to capture the
heterogeneity in a statistically robust way.
There are numerous points at which bias or error can be in-

troduced to field-plot estimates of forest structure and biomass
(reviewed in ref. 24). By comparing the LiDAR data in the
locations of 1-ha field plots to their host landscapes we limited our
assessment of bias solely to that resulting from plot-to-landscape
scaling. Consequently, we can neither draw conclusions about un-
represented forest types in the Amazon basin nor extend our
analysis beyond the landscape scale. Although such analyses
are needed, they fall outside the scope of this paper.
We do not criticize the effort expended in creating and

maintaining field-plot networks or the value of the data gathered
from them. All of the plots used in the current study were cre-
ated for a variety of reasons other than scaling biomass or
structural estimates to the landscape and/or region. Our un-
derstanding of local forest processes across a range of environ-
mental and floristic gradients have been greatly advanced by
such plot networks (42–44). However, our results make clear that
accurate estimates of landscape-scale forest properties and pro-
cesses cannot readily be obtained from plots. Therefore, we must
develop new sampling approaches that minimize plot bias or, at the
very least, better account for the biases of current plots.

Table 1. Mean values of forest structural variables for each field plot and associated host landscape grid network

Plot Substrate

Mean TCH, m P:H ratio Canopy gap λ
Canopy gap density,
gaps per hectare Canopy gap size, m2

Plot
Grid

network %Δ, % Plot
Grid

network %Δ, % Plot
Grid

network %Δ, % Plot
Grid

network %Δ, % Plot
Grid

network %Δ, %

Lowland
JEN_11 ETF 22.9 22.6 1.7 0.66 0.60 11.4 1.72 1.94 −11.7 9.0 4.0 123.5 4.4 3.7 21.2
TAM_06 DFP 25.5 22.0 15.6 0.59 0.47 25.9 1.61 1.86 −13.4 5.0 6.5 −23.1 3.4 19.2 −82.3
TAM_09 DFP 20.9 18.8 11.4 0.47 0.52 −10.1 1.98 2.03 −2.4 8.0 4.2 89.1 2.6 6.1 −57.1
TAM_05 ETF 23.5 20.2 16.3 0.61 0.55 11.0 1.88 2.04 −7.7 2.0 4.9 −59.1 2.5 3.4 −27.0
Average bias 11.3 14.6 8.8 73.7 46.9

Montane
SPD_02 Montane 20.2 16.0 26.1 0.42 0.24 78.7 NA 1.77 NA 0.0 20.1 −100.0 NA 20.5 NA
TRU_08 Montane 12.5 13.8 −8.9 0.44 0.19 125.9 1.75 1.79 −2.1 5.0 24.2 −79.3 3.4 13.8 −75.3
TRU_04 Montane 14.5 12.6 15.4 0.62 0.21 197.4 1.78 1.88 −5.3 3.0 31.1 −90.4 3.0 8.7 −65.6
ESP_01 Montane 13.4 12.0 11.6 0.48 0.21 136.0 2.93 1.88 55.7 13.0 30.4 −57.3 1.4 11.1 −87.5
TRU_03 Montane 10.9 11.4 −4.7 0.12 0.19 −38.8 2.56 1.87 36.6 26.0 31.1 −16.5 1.5 13.4 −88.8
TRU_01 Montane 10.3 9.0 14.1 0.13 0.15 −12.7 2.17 1.81 19.6 25.0 42.0 −40.5 3.5 17.9 −80.6
Average bias 13.5 98.2 19.9 64.0 66.3

%Δ is the difference between the plot and grid network estimates as a percentage of the grid network. Average bias is the average absolute percent bias.
Canopy gap-related variables are derived from gaps at vegetation height ≤2 m. λ, size-frequency distribution scaling coefficient; NA, not applicable; P:H ratio,
ratio of forest canopy architecture; TCH, top-of-canopy height.
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The central issue is how to accurately characterize heteroge-
neous tropical forest landscapes. Characterization of landscape
or regional forest heterogeneity is not possible without using
some means of remote sensing data at these scales. Using active
remote-sensing instruments (i.e., LiDAR and radar) able to re-
solve heterogeneity in forest structural attributes within land-
scapes is essential. Once a basic understanding of a landscape’s
spatial heterogeneity is developed from airborne or satellite
data, multiple field sampling plots might be placed such that the
full range of landscape variability is captured. In this case,
multiple plots (≤1 ha) are recommended rather than one large
plot to avoid spatial autocorrelation effects (25). However, av-
erage CV values calculated in this study were greater than 20%
for most variables (Table 2 and Tables S1 and S3), indicating
high spatial sampling error regardless of where plots are placed
within the landscape (23).
The inherently high spatial sampling error of Amazonian

landscapes indicates that a large number of field plots are
required to achieve reliably high accuracy in estimating forest
structure and biomass variables. Our field-plot sample size sim-
ulations for EACD reveal that even a relatively homogenous
landscape (CV of 9.5%) would require 10 randomly placed 1-ha

field plots to achieve 90% accuracy in estimating the landscape
mean EACD (Fig. 5B and Table S5). As landscape heterogeneity
increases the number of field plots required to achieve 90%
accuracy balloons to over 100 plots per landscape. On average in
both lowland and montane landscapes an impractical number of
field plots per landscape (44 per lowland and >85 per montane)
are needed to achieve 90% accuracy, whereas a higher level of
accuracy (95%) requires nearly double the number of plots in
many cases (Table S5). Under a reduced emissions from defor-
estation and degradation (REDD+) program, increasing un-
certainty in forest carbon estimates leads to a decreasing monetary
value of forest carbon (45–47), with some studies suggesting that
accuracies below 95% could exclude (or greatly reduce) most
nations from generating monetary benefits under an REDD+
program (48, 49).
The spatial biases and errors inherent in field-plot sampling of

heterogeneous landscapes necessitate an alternative approach.
Future studies of forest structure and biomass could use airborne
LiDAR as the primary sampling technique to fully resolve
landscape structural variables. Because no spaceborne LiDAR
is currently operating, only airborne LiDAR can feasibly pro-
vide the necessary continuous spatial coverage to fully capture
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landscape heterogeneity, allowing for accurate assessments of
forest structure and carbon stocks. Advances in flight planning,
collection of LiDAR data, and scaling have reduced costs
enormously, approaching $0.01·ha−1 in some regions (16, 50).
Sampling landscapes with field plots cannot achieve the same
economies of scale as airborne LiDAR because plot-level costs
increase on a per-area basis. Plot-based sampling of the 10
landscapes in this study would require more than 700 1-ha field
plots to achieve a reliably accurate estimate (Table S5). Such a
strategy is unfeasible and unproductive, yielding fewer than 9,000
ha of tropical forest carbon stock estimates. When studying
forest structure and carbon at landscape or regional scales,
field plots can be used for calibration and validation of remote
sensing data and for understanding local-scale controls on
forest structure and carbon.

We have entered an era in which extrapolations and predic-
tions of forest properties based on sparsely and/or nonrandomly
distributed field plots are no longer acceptable for understanding
tropical forests in regional or global carbon cycles. Reducing
uncertainties to a level just acceptable enough to pass peer review
only undermines the goals of tropical biodiversity conservation
and climate-change mitigation. Moreover, there are consider-
able monetary benefits to reducing uncertainties as the crea-
tion and price of carbon credits under REDD+ are linked to
the accuracy of forest carbon estimates (45, 49). Fortunately,
continuing technological, theoretical, and analytical advancements
offer the potential for limiting biases and reducing uncer-
tainties in pursuit of these goals. If ecologists are to effectively
embrace the shift toward investigations at meso- to macroscales
(51, 52) a fundamental shift in the way we approach field sam-
pling must occur. We have shown here that the status quo is
unacceptable if high accuracy across large spatial scales is to
be achieved.

Methods
Study Landscapes. We selected three tropical forest landscapes in Peru: one
northern lowland in Jenaro Herrera, one southern lowland in Tambopata,
and one montane in the Kosñipata Valley (Table S6). From among these
areas we defined 10 local host landscapes (Landscape Sampling Area), each
of which is associated with a 1-ha permanent field plot used for forest in-
ventories by the RAINFOR and Andes Biodiversity and Ecosystem Research
Group (ABERG) plot networks (33, 53). In the lowland landscapes mean
annual precipitation ranges from 2,600 to 2,700 mm and mean annual
temperature from 24.0 to 26.6 °C. In the montane landscapes, mean annual
precipitation ranges from 1,705 to 4,628 mm and mean annual temperature
varies from 8.0 °C at the highest elevation to 18.5 °C at lower submontane
elevations. The forest substrates in the lowland landscapes fall into two
broad classes: ETF substrates on elevated terraces containing soils with high
clay content classified as Ultisols and depositional floodplain (DFP) substrates
in low-lying areas near rivers and streams with loamy-to-sandy soils classified
as Inceptisols (54). The montane landscapes are on substrates with soils
classified as Inceptisols or Entisols (55).

Airborne LiDAR Collection and Layer Processing. The LiDAR data were col-
lected in August 2011 using the Carnegie Airborne Observatory-2 Airborne
Taxonomic Mapping System (AToMS), which is carried onboard a twin tur-
bopropeller Dornier 228 aircraft (56). The AToMS LiDAR is a dual-laser,
scanning waveform system capable of operating at 500,000 laser shots per
second. For this data collection, the aircraft was operated at speeds of up to
110 kn at an altitude averaging 2,000 m above ground level. The LiDAR
settings were maintained at an average on-the-ground laser spot spacing of

Table 2. Comparison of plot and grid network mean LiDAR EACD for each landscape

Plot Forest

Mean LiDAR EACD, Mg C·ha−1

Plot Grid network %Δ, % CV, %

Lowland
JEN_11 ETF 118.1 115.4 2.4 9.5
TAM_06 DFP 111.7 89.6 24.7 24.2
TAM_09 DFP 81.4 69.8 16.6 27.1
TAM_05 ETF 98.2 77.7 26.3 18.7

Average bias 17.5 Average CV 19.9
Montane

SPD_02 Montane 98.7 76.7 28.6 27.4
TRU_08 Montane 58.4 65.6 −9.7 38.1
TRU_04 Montane 68.9 58.7 17.4 31.3
ESP_01 Montane 63.1 55.9 12.9 32.0
TRU_03 Montane 49.5 52.5 −5.7 34.1
TRU_01 Montane 46.7 40.2 16.2 27.7

Average bias 18.5 Average CV 31.8

%Δ is the difference between the plot and grid network estimates as a percentage of the grid network. CV is
coefficient of variation of the grid network. Average bias is the average absolute percent bias. EACD, estimated
aboveground carbon density.
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Fig. 3. (A) LiDAR estimated aboveground carbon density (EACD) at the plot
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each location. Green bars show the SD in EACD for the grid network. (B)
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the grid network EACD as a percentage of the grid network EACD.
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two shots per square meter, peaking at four shots per square meter in areas
of flightline overlap. This level of sampling ensured that the derived LiDAR
measurements were highly precise in horizontal and vertical space (56).

Following data acquisition, laser ranges from the LiDAR were com-
bined with embedded high-resolution Global Positioning System–Inertial
Measurement Unit (GPS-IMU) data to determine the 3D locations of laser
returns, producing a “cloud” of LiDAR data. The LiDAR data cloud con-
sists of a very large number of georeferenced point elevation estimates
(centimeters), relative to a reference ellipsoid (WGS 1984). LiDAR data
points were processed to identify which laser pulses penetrated the
canopy volume and reached the ground surface. We used these points
to interpolate a raster digital terrain model (DTM) for the ground sur-
face. This was achieved using a 5- × 5-m kernel passed over each flight
block; the lowest elevation estimate in each kernel was assumed to be
ground. Subsequent points were evaluated by fitting a horizontal plane
to each of the ground seed points. If the closest unclassified point was
<5.5° and <1.5 m higher in elevation it was classified as ground. This
process was repeated until all points within the block were evaluated.
The digital surface model (DSM) was based on interpolations of all first-
return points. Measurement of the vertical difference between the DTM
and DSM yielded a model of TCH.

Gaps in the canopy were defined by applying the definition of Brokaw (57)
to the TCH model. Openings in the forest canopy extending down to
a vegetation height of ≤2 m and to a vegetation height of ≤20 m were used
as gap thresholds. The former can be thought of as whole-tree and large
canopy branch failures (“canopy gaps”), whereas the latter can be consid-
ered crown and branch failures in the upper canopy (54). Upper canopy gaps
were not computed for the montane landscapes.

The vertical distribution of LiDAR points was processed by binning the data
into volumetric pixels (voxels) at 5- × 5-m spatial and 1-m vertical resolution
(58). The DTM was used to standardize the vertical datum of each voxel.

Therefore, the heights of each vertical “slice” of a vegetation canopy were
defined relative to the ground at the horizontal center of each voxel. After
all LiDAR points were binned in the volume cube, each vertical column of the
cube was divided by the total number of LiDAR points in that column,
yielding the percentage of LiDAR points that occurred in each voxel. This
approach has the advantage of decreasing our sensitivity to localized var-
iations in canopy leaf density or tree branch characteristics, which can result
in a different number of LiDAR returns from voxel to voxel. It is important to
note that our vertical profiles are based on LiDAR returns that serve as
proxies for actual vertical canopy profiles (58, 59).

LiDAR-Derived Structural Variables. We calculated both the mean and maxi-
mum TCH per unit area. Using the slicer layers, we computed a ratio of height
above ground at the maximum canopy volume (P) to the 99th percentile of
total canopy height (H). The P:H ratio is ametric describing the architecture of
a forest canopy over a given area (60). We determined the number of canopy
layers by taking the first derivative of the vertical profile and summing the
number of negative-to-positive sign changes.

We computed the gap size-frequency variable λ for both the ≤2-m veg-
etation height (canopy gap) and ≤20-m vegetation height (upper canopy
gap) layers. We used the approach and R syntax provided by ref. 54, where
the gap size-frequency distribution of a given area was quantified using the
zeta distribution. For the zeta distribution with parameter λ, the probability
that gap size takes the value k is

fðkÞ= k−λ

ζðλÞ, [1]

where the denominator is the Riemann zeta function and is undefined for
λ = 1. This distribution is also known as the “discrete Pareto distribution”
and is appropriate for modeling the size-frequency of canopy gaps (here-
after referred to as “gap λ”) (31, 61, 62). We calculated the gap density
(gaps per hectare) and the average gap size per unit area for both the
canopy gap and upper canopy gap layers.

Instead of AGB, we calculate aboveground carbon density (carbon is 48%
of dry woody biomass; 63). EACD was calculated from the LiDAR-derived TCH
layer using the plot-aggregate allometric equation from ref. 19:

EACDLiDAR = aTCHb1BAb2ρBA
b3, [2]

where TCH is the mean LiDAR-derived top-of-canopy height for the sample
area, and a, b1, b2, and b3 are universal model regression coefficients (from
table 2 in ref. 19). BA is TCH-estimated basal area, and ρBA is TCH-estimated
basal-area weighted wood density, of the form

BA=m1TCH+b1 [3]

ρBA =m2TCH+b2, [4]

where m1, m2, b1, and b2 are regression coefficients specific to the subregion
of Peru where each plot is located (from table 3 in ref. 19). Note that this
plot-level allometric equation was developed from a global network of 904
tropical field inventory plots (used for calibration/validation of remote
sensing data) incorporating a wide range of forest physiognomies, floristics,
soils, and environmental variables.

Landscape Sampling Area.We introduce the concept of a “host landscape,” or
the surrounding forest within ∼102–104 ha of a field plot that contains
similar substrate, elevation, and forest type. For each host landscape we first
defined the maximum host landscape sampling area (polygon) based on
a set of criteria unique to each elevation and forest substrate combination
(Fig. 1 and Fig. S1). To differentiate lowland DFP from lowland ETF land-
scapes, elevation breakpoints between each substrate were found by man-
ually examining each lowland DEM and creating masks based on these
breakpoints. A 50-m inward buffer was applied to each mask to ensure there
was no overlap with adjacent landscape types.

For montane landscapes, we created a 75-m buffer up and down slope
from the centroid of each field plot. This buffer distance allowed the
creation of nonoverlapping polygon “bands” (Fig. 1C and Fig. S1C) from
which we could sample the host landscapes of similar elevation, except
in the case of ESP_01 and TRU_04, which had a 56-m overlap. These polygon
bands were created from the full extent of the LiDAR sampling area for the
Kosñipata landscape.

We gridded each host landscape polygon into 100- × 100-m cells to form
a grid network used to create a 1-ha sampling distribution of the host
landscape. We removed grid cells that overlapped water features by more
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Fig. 4. Maps of estimated aboveground carbon density (EACD) with color
scheme from dark red (low EACD) to dark green (high EACD) matching the
distribution plots to the right for lowland landscapes (A) JEN_11, (B) TAM_05,
(C ) TAM_06, and (D) TAM_09. Map background is a digital elevation model
with shading as in Fig. S1 and field-plot locations are represented by a blue
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ability density distributions of the lowland host landscape grid networks are
plotted to the right of each map, with the blue line representing the mean
EACD from the associated 1-ha field inventory RAINFOR plot. The three
Tambopata host landscapes (TAM_05, TAM_06, and TAM_09) are the same
as in Fig. 1B but shown here in separate figure windows for clarity.
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than 0.25 ha. To identify zones of land use, landslides, nonforested areas
above the tree line, water bodies, and other anomalous landscape features
to remove from the grid network we created a mask using slicer bands that
contained no LiDAR returns from 15–45 m and 5–30 m in height for lowland
and montane host landscape, respectively. A low-pass Gaussian filter with
a 15-m kernel and a median filter with a 3-m kernel were used to smooth
the masks for the lowland and montane landscapes, respectively. These
masks were visually compared with each host landscape TCH layer and
grid cells overlapping anomalous landscape features by more than 0.25 ha
weremanually selected for removal. In the one case where themaximum sample
areas overlapped (TRU_04 and ESP_01), any grid cells that fell into the other host
landscape were removed from the grid network. The total gridded area (or
number of grid cells) of each landscape is shown in Table S6.

Coordinates of the field plots were collected using a survey-grade GPSwith
multiple-bounce filtering and postdifferential correction with average
uncertainties of ≤2 m (Leica GS-50+; Leica Geosystems Inc.). All image pro-
cessing, data extraction, and vector layer creation was performed in IDL/
ENVI (Exelis) and/or ArcGIS (Esri).

Analysis. Data for each LiDAR-derived structural variable was extracted
and analyzed at three spatial scales for each host landscape: the 1-ha field plot,
the 1-ha grid network, and the full ungridded landscape. For the purposes of this
study we assume that airborne LiDAR produces perfectly accurate estimates of
each variable (i.e., excluding allometric scaling/measurement errors). This allows
for the isolation of the effect of spatial scale between field plot and host landscape.
The difference between a field plot and the mean of its host grid network was
calculated as a percent of the host grid network’s mean. We use the mean even
when a grid network’s distribution is skewed or multimodal because the grid
network is the full population, rather than a population sample that would re-
quire a differentmeasure of central tendency. A sample (collection of field plots)
is biased if its estimate of the population (collection of host landscapes) is dif-
ferent from the true value of the population (64). Toassess the plot-level bias, for
each set of lowland and montane host landscapes we calculate bias as the av-
erage of the absolute value of the percent differences between each individual
plot and associated grid network. To assess the inherent bias in a 1-ha sampling
approach regardless of plot placement, for each set of lowland and montane

host landscapes we calculate bias as the average of the absolute value of the
percent differences between each grid network and its ungridded landscape.

To characterize spatial heterogeneity we calculated the CV for each forest
structural variable as

CV=
σ
μ
× 100, [5]

where σ is the SD and μ is the mean of the variable at a particular spatial
scale (i.e., field plot, grid network, or ungridded landscape). Sampling error
is the unpredictable variation (heterogeneity) that would be accounted for if
the entire population could be sampled. Therefore, we also use the CV to
quantify spatial sampling error (25).

We used Monte Carlo simulations to determine how many field plots are
needed to estimate the mean EACD value of a landscape to a specified ac-
curacy. For each landscape, a random sample of 1-ha grid cells was selected
from the landscape grid and the sample mean compared with the mean of
the full landscape grid. This was repeated 10,000 times to find the probability
that the selected number of field plots was accurate to within 95, 90, and
80% of themean of the full landscape grid. We ran this simulation for sample
sizes of 1 through 100 1-ha field plots.

To assess the accuracy and precision of using TCH to predict EACD, we
regressed LiDAR-based EACD against field plot-derived EACD obtained from
recent published values (43, 65, 66). Using Eqs. 2–4, we modeled EACD using
mean TCH for each field plot, and for each cell in the grid networks. We
assessed bias and CV as above and mapped EACD across each lowland grid
network. All data processing and analyses were performed in R (67).
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Fig. S1. Digital elevation model (DEM) showing the three study regions: (A) Jenaro Herrera, (B) Tambopata, and (C) Kosñipata in Peru. Descriptive in-
formation for each landscape is provided in Table 1. Lowland landscapes are shaded in green and differentiated by color outline in B. Montane landscapes are
colored by elevation, with zoom insets for detail using the same scaling as in A and B. The location of the 1-ha field inventory plots is shown in red with black
arrows for easier identification. Discontinuities in the montane host landscapes are due to gaps in the LiDAR coverage, whereas discontinuities in the lowland
host landscapes result from the narrow elevation ranges used to delineate each forest substrate and the removal of grid cells near water features.
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Fig. S2. Probability density distributions of gap size (square meters) across landscape grid networks (green), with individual grid cells plotted as small black
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termined from the empirical cumulative distribution function). Montane plots are ordered by increasing elevation. Note that the absence of gaps in SPD_02
means no field-plot gap size can be calculated.
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Fig. S3. Vertical canopy profiles of the grid networks (green) and the associated field plots (red) for (A) lowland ETF, (B) lowland DFP, and (C) montane
landscapes. Solid lines indicate the mean profile and shading is the 95% confidence interval. For the field plots, 95% confidence intervals were obtained from
1,000 bootstrap samples.
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Fig. S4. Performance of LiDAR estimated aboveground carbon density (EACD) in predicting field-estimated aboveground carbon density for Andean and
Amazonian field plots. The solid red line is the linear regression model fit and the black dashed line is the 1:1 line provided for reference. Bias reflects the mean
errors or lack of fit between predicted and observed. RMSE, root mean squared error.

Table S1. CV of forest structural variables for the host landscape grid network

CV, %

Plot Substrate Mean TCH, m P:H Canopy gap λ
Canopy gap density,
gaps per hectare Canopy gap size, m2

Lowland
JEN_11 ETF 6.3 11.5 19.9 99.8 94.8
TAM_06 DFP 15.6 45.3 20.8 105.6 307.5
TAM_09 DFP 17.8 21.4 20.2 97.0 290.3
TAM_05 ETF 12.2 16.9 20.0 95.6 100.1
Average 13.0 23.8 20.2 99.5 198.2

Montane
SPD_02 Montane 25.2 80.4 16.4 76.4 154.8
TRU_08 Montane 34.8 84.3 14.8 65.6 164.1
TRU_04 Montane 28.0 83.3 15.8 80.9 146.8
ESP_01 Montane 28.6 81.3 16.4 86.0 150.4
TRU_03 Montane 30.2 80.1 17.3 77.8 189.9
TRU_01 Montane 23.8 89.2 12.2 62.3 151.6
Average 28.4 83.1 15.5 74.8 159.6

Higher values indicate more spatial heterogeneity and sampling error. Canopy gap-related variables are derived from gaps at
vegetation height ≤2 m. λ, size-frequency distribution scaling coefficient; P:H ratio, ratio of forest canopy architecture; TCH, top-of-
canopy height.
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Table S2. Mean values of structural variables for each field plot and associated host landscape grid network

Max TCH, m No. of layers Upper canopy gap λ

Upper canopy gap
density, gaps per

hectare
Upper canopy gap

size, m2

Plot Forest Plot
Grid

network %Δ, % Plot
Grid

network %Δ, % Plot
Grid

network %Δ, % Plot
Grid

network %Δ, % Plot
Grid

network %Δ, %

Lowland
JEN_11 ETF 31.9 32.8 −2.8 7.0 6.1 14.7 1.63 1.69 −3.8 74.0 76.2 −2.9 28.1 29.8 −5.9
TAM_06 DFP 35.0 35.3 −1.0 5.0 8.3 −40.0 1.77 1.85 −4.3 107.0 76.5 39.9 13.7 38.9 −64.7
TAM_09 DFP 33.6 29.2 15.1 8.0 5.8 38.9 1.97 1.84 6.9 71.0 60.1 18.1 40.7 72.5 −43.9
TAM_05 ETF 34.3 30.9 11.0 8.0 6.6 20.9 1.91 1.76 8.4 80.0 58.9 35.8 25.7 59.2 −56.6
Average bias 7.5 28.6 5.9 24.1 42.8

Montane
SPD_02 Montane 28.5 28.8 −1.0 7.0 6.5 7.9 NA NA NA NA NA NA NA NA NA
TRU_08 Montane 20.0 25.8 −22.6 2.0 5.6 −64.0 NA NA NA NA NA NA NA NA NA
TRU_04 Montane 21.5 23.4 −8.3 7.0 4.7 50.0 NA NA NA NA NA NA NA NA NA
ESP_01 Montane 20.7 22.4 −7.5 5.0 4.4 14.4 NA NA NA NA NA NA NA NA NA
TRU_03 Montane 18.2 20.9 −13.0 4.0 3.8 5.0 NA NA NA NA NA NA NA NA NA
TRU_01 Montane 18.2 17.2 6.0 3.0 2.8 7.3 NA NA NA NA NA NA NA NA NA
Average bias 9.7 24.8 NA NA NA

%Δ is the difference between the plot and grid network estimates as a percentage of the grid network. Average bias is the average absolute percent bias.
Gap related variables are derived from gaps at vegetation height ≤20 m (upper canopy). Upper canopy gap variables were not calculated for the montane
landscapes. λ, size-frequency distribution scaling coefficient; NA, not applicable; TCH, top-of-canopy height.

Table S3. CV of forest structural variables for the grid network

CV, %

Plot Forest Maximum TCH, m Layers Gap λ
Upper canopy gap density,

gaps per hectare
Upper canopy
gap size, m2

Lowland
JEN_11 ETF 6.1 28.2 5.0 22.4 52.6
TAM_06 DFP 12.9 27.1 9.4 34.8 280.9
TAM_09 DFP 18.6 41.9 14.0 60.0 337.6
TAM_05 ETF 13.1 32.6 11.5 42.0 421.7
Average 12.7 32.5 10.0 39.8 273.2

Montane
SPD_02 Montane 21.2 41.0 NA NA NA
TRU_08 Montane 25.9 48.9 NA NA NA
TRU_04 Montane 24.1 51.7 NA NA NA
ESP_01 Montane 25.9 54.0 NA NA NA
TRU_03 Montane 26.2 55.3 NA NA NA
TRU_01 Montane 17.4 44.3 NA NA NA
Average 23.5 49.2 NA NA NA

Higher values indicate more spatial heterogeneity and sampling error. Gap related variables are derived from gaps at vegetation height ≤20 m (upper
canopy). Upper canopy gap variables were not calculated for the montane landscapes. λ, size-frequency distribution scaling coefficient; NA, not applicable;
TCH, top-of-canopy height.
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Table S5. Number of field plots needed per landscape to achieve different levels of accuracy in estimating the landscape grid mean
EACD at four different probabilities

95% accuracy 90% accuracy 80% accuracy

Plot Substrate 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6

Lowland
JEN_11 ETF 38 23 15 10 10 6 4 3 3 2 1 1
TAM_06 DFP >100 >100 90 61 58 37 24 16 15 10 6 4
TAM_09 DFP >100 >100 >100 75 71 44 29 20 20 12 8 5
TAM_05 ETF >100 81 56 38 37 22 15 10 9 6 4 2
Average >85 >76 >65 46 44 27 18 12 12 8 5 3

Montane
SPD_02 Montane >100 >100 >100 75 75 46 31 21 20 12 8 5
TRU_08 Montane >100 >100 >100 >100 >100 88 57 41 37 23 16 10
TRU_04 Montane >100 >100 >100 >100 95 60 41 27 27 16 10 7
ESP_01 Montane >100 >100 >100 >100 >100 61 41 28 27 17 11 7
TRU_03 Montane >100 >100 96 96 98 75 47 33 30 19 12 8
TRU_01 Montane >100 >100 >100 75 70 46 31 21 20 12 8 6
Average >100 >100 >100 >91 >85 63 41 29 27 17 11 7

A maximum sample size of 100 field plots was assessed. EACD, estimated aboveground carbon density.

Table S6. Locations of the field plots published by RAINFOR and ABERG, along with information on host landscape assessment

Landscape Plot Latitude Longitude Elevation, m Landscape size, ha Forest substrate MAT, °C MAP, mm Soils

Lowland
Jenaro Herrera JEN_11 −4.8781 −73.6295 131.2 1,252 ETF 26.6 2,700 Ultisol
Tambopata TAM_06 −12.8385 −69.2960 214.8 874 DFP 24.0 2,600 Inceptisol
Tambopata TAM_09 −12.8309 −69.2843 219.2 616 DFP 24.0 2,600 Inceptisol
Tambopata TAM_05 −12.8303 −69.2705 223.3 750 ETF 24.0 2,600 Ultisol

Montane
San Pedro SPD_02 −13.0491 −71.5365 1,712.9 1,017 Montane 18.5 4,628 Inceptisol
Mirardor TRU_08 −13.0702 −71.5559 1,831.5 1,014 Montane 18.5 4,341 Entisol
Trocha Union TRU_04 −13.1055 −71.5893 2,719.1 913 Montane 13.0 2,678 Inceptisol
Esperanza ESP_01 −13.1751 −71.5948 2,868.3 863 Montane 12.5 1,705 Inceptisol
Trocha Union TRU_03 −13.1097 −71.5995 2,989.5 1,011 Montane 13.0 2,678 Inceptisol
Trocha Union TRU_01 −13.1136 −71.6069 3,379.3 526 Montane 8.0 2,448 Inceptisol

MAP, mean annual precipitation; MAT, mean annual temperature. All montane landscapes are in the Kosñipata Valley.
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