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Abstract

Climate change, agricultural expansion, and population growth are dramatically altering ecosystem

structure, function, and community composition worldwide. Yet our ability to measure, monitor,

and forecast biodiversity change—crucial for mitigating it—remains limited. Until recently, global

biodiversity monitoring systems seemed far-fetched. The sheer amount of data that would be required

to map the variation in genes, species, communities, and ecosystems that comprises biodiversity is

enormous, to say nothing of mapping change over time. Until recently, ecology was perceived as a

data-scarce discipline, with field plots and species occurrence records sparsely and opportunistically

collected, and access fragmented among research groups. But several advances in the past decade—the

deployment of hundreds of earth observing sensors, the consolidation and standardization of open

ecological data, and increased access to open software and computing resources—have significantly

reduced the ecological data gap that biodiversity monitoring systems needed to bridge. What should

we make of all this new information? Right now, the data alone are insufficient for monitoring

purposes. Ecological data are subject to taxonomic, geographical, or recency biases, and satellites do

not record measurements in ecological units; they’re often in units of energy (e.g., W m−2 sr−1 µm−1).

But a framework that links these disparate data types—discrete, spatially-explicit species data and

continuous, feature-rich, and regularly-updated earth observations imagery—could be used to precisely

map species locations and habitat across large extents over time. In this dissertation, I demonstrate

how concepts of pattern and scale in ecology could be used to design such a framework, as these

concepts apply to both ecological and to earth observations analyses.

Following a literature review of the scale-dependent challenges to linking in situ and earth

observations data, I describe two scale-explicit machine learning approaches to species mapping:

classifying species identities for individual tree crowns in high resolution airborne earth observations
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data, and mapping the niches and distributions of two mosquito arbovirus vectors, Aedes aegypti

and Ae. albopictus, using low resolution satellite data. The tree species modeling approach identified

crowns with > 90% accuracy, enabling precision species mapping over large areas. The mosquito

modeling approach identified novel drivers of the spatial distributions for these arbovirus vectors,

revealing that resource constraints (i.e., access to blood meals) play a central role in determining

distribution patterns for these globally invasive species. These applications span several orders

of biological magnitude, mapping some of the largest (trees) and smallest (mosquitoes) terrestrial

macro-organisms across landscape and continental extents. This work advances the conceptual and

technical basis for deploying satellite-based biodiversity monitoring systems using ecological scaling

principles.

v



Acknowledgments

This work was deeply influenced by conversations and friendships with many kind and smart people,

to whom I owe so much.

Gretchen Daily welcomed me to her lab in the Biology Department in early 2016. She has

been a champion and an advocate for me every day since, and I am profoundly grateful for the

opportunities she has created for me. I am inspired by her commitment to understanding the value

of nature—from all perspectives—and to finding opportunities to conserve and cherish our planet’s

wondrous biodiversity. We’ve always shared the commitment; she taught me how to translate it

into action. I’ve learned so much from Gretchen: how to communicate my work with passion and

precision; how to build an organization dedicated to inclusive, science-driven conservation; the value

of leading through empowering others; and how to meet every person where they are. As my primary

adviser, Gretchen was solely focused on my development as a scientist, ensuring I was working on

problems I was passionate about and that I had access to the people and resources that would help

me grow. I benefit tremendously as a result. Thank you.

I have had the honor and the privilege of being advised by Erin Mordecai and Chris Field, two

thoughtful, critical and generous professors who inspire and challenge me in every discussion we

have. When most of my early research focused on finding empirical patterns in ecological data, Erin

encouraged me to dig deeper and deeper into the biological mechanisms that might underpin them,

helping me think more clearly and test assumptions more rigorously than I would have otherwise.

Chris has a wealth of knowledge and experience as a scientist and as an adviser. I am regularly

amazed by his ability to ask the right question or provide the right recommendation to help me

think through an issue more clearly and guiding me towards novel research frontiers. They have both

shaped my perspective as a scientist, and I am grateful for their advice.

vi



In the Biology Department, I wish to express my gratitude to Hal Mooney and Rodolfo Dirzo.

Both Hal and Rodolfo have made themselves available as mentors throughout my time at Stanford,

and have provided insights and encouragement that I value deeply. They are both role models for

me as global ecologists, and it’s been a thrill to spend time with them.

I am fortunate to be affiliated with the Stanford Center for Conservation Biology. I built strong

professional and personal relationships there with Jeff Smith, Nick Hendershot, Kelly Langhans,

Ale Echeverri, Priscilla San Juan, Beth Morrison, Avery Hill, Lucas Pavan, Greg Bratman, Hannah

Frank, and Jon Flanders. I am particularly grateful for the time spent with Jeff, Nick, and Kelly, as

we had the opportunity to grow together as Ph.D. students and to constantly learn from each other.

I had a blast.

I spent many hours learning from the scientists at the Natural Capital Project, and probably even

more hours socializing with them. Thank you to the NatCap team for welcoming me and teaching

me new ways to think about the value of nature. Special thanks are due to Becky Chaplin-Kramer,

Lisa Mandle, Rich Sharp, Ben Bryant, Marcelo Guevara, Morgan Kain, Adrian Vogl, Sarah Cafasso,

Perrine Hamel, Charlie Weil, James Douglass, Steve Polasky and Mary Ruckelshaus.

Thank you to all of the collaborators who helped design, plan and execute the mosquito vector

field surveys in Costa Rica and Peru, which are reported in Chapter 4. This includes Meghan Howard,

Willy Lescano, Luis Fernandez, Stephanie Montero Trujillo, Ricardo Gamboa, Mileyka Santos Gaitán,

Denis Navarro, Eloy Inisuy, Paul Sairitupa, Joel Sajami, and Jamieson O’Marr.

I am grateful for the support of Stanford University, which provided access to a unique array of

educational resources. I spent many hours in the collections of the Branner Earth Sciences Library, the

Bowes Art & Architecture Library and the David Rumsey Map Center. Libraries are tremendously

valuable and often underutilized resources, and I appreciate the University’s commitment to archiving,

indexing and making accessible their unique and expansive collections. I have also benefit from access

to resources like the Hume Center for Writing and Speaking and the Stanford Geospatial Center,

which helped me grow as a writer, an analyst and as a scholar.

Prior to enrolling at Stanford, I worked as a staff research assistant in the Department of Global

Ecology at the Carnegie Institution for Science. I owe much to Greg Asner and Robin Martin, who

gave me opportunity after opportunity to learn and grow as an ecologist and as a technologist. I

was able to travel the world with the Carnegie Airborne Observatory, spending hundreds of hours

vii



surveying forests from the sky. I’ve flown transects from the Andes to the Amazon, witnessing both

the unparalleled beauty of the transition from treeline to the lowlands, and the rapid loss of forests to

fires, gold mining, and logging. The experience richly colored my understanding of the earth system:

as beautiful, complex, very big, and changing in ways that are hard to convey with numbers alone.

I was also fortunate to meet and learn from an outstanding group of scientists during my time at

the Department of Global Ecology. This includes Claire Baldeck, Jomar Barbosa, Joe Berry, Joe

Boardman, Paulo Brando, Phil Brodrick, Loreli Carranza-Jiménez, Dana Chadwick, Cecilia Chavana-
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Epigraph

Bertrand Russell declared that, in case he met God, he would say to [them], “You did not give us enough

information.” I would add to that, “All the same, I’m not persuaded that we did the best we could with the

information we had. Toward the end there, anyway, we had tons of information.”

Kurt Vonnegut Jr., Palm Sunday
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grassland system in Mesoamerica, announcing that climate change has already arrived. 70

B.1 Per-species secondary model performance metrics applied to test data calculated using

per-crown prediction probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.2 Confusion matrix computed from the binary classification results of the CCB-ID model

on the competition test data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xv



Chapter 1

Introduction

Christopher B. Anderson

1.1 Global Change Ecology

The form and function of the earth’s ecosystems are rapidly changing. Agricultural lands are now

the largest terrestrial biome in the world, occupying approximately 40% of the land surface [Foley

et al., 2005, Springmann et al., 2018]. This expansion occurred at the expense of the world’s

forests, exerting an exacting toll in the tropics. There was a net loss of 42 million hectares of forest

between 2000 and 2010 in tropical countries, commensurate with a net gain of 36 million hectares in

agricultural lands [FAO, 2016]. Roughly two-thirds of agricultural area is pasture for livestock, which

comprises approximately 60% of global mammalian biomass, significantly outweighing humans and

wildlife, which comprise the remaining 36% and 4% [Ramankutty et al., 2008, Bar-On et al., 2018].

Simultaneously, forested area is increasing across temperate and boreal systems, and it is unclear

whether total global forest area is increasing or decreasing over decadal time scales [Hansen et al.,

2013, Song et al., 2018].

This restructuring of the earth’s ecosystems could be framed as a global game of whack-a-mole.

Wildlife populations are crashing while livestock populations are booming. Forests are cut and

cleared in the tropics, replanted and restored in temperate and boreal systems (Fig. 1.1). This

has had tremendous effects on terrestrial biodiversity; around 25% of plant and animal groups are

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Transition from forest to agriculture at the edge of the Las Alturas Wildlife Sanctuary in
Costa Rica. Land use change is fundamentally altering patterns of ecosystem structure and ecosystem
function, including the amount of wildlife habitat and patterns of primary productivity.

threatened, the extinction rate is now tens to hundreds of times higher than the average rate over

the past 10 million years, and the number of invasive species per-country has increased nearly 70%,

all leading to the widespread erosion of differences between ecological communities [IPBES, 2019].

Ecosystems are a canonical example of complex, interconnected systems, and these changes are bound

to have far-reaching consequences for other ecological processes. This includes the transmission of

vector-borne diseases, which are poised to increase in frequency and intensity with environmental

change, potentially exposing an additional billion people to the threat of Zika alone [Ryan et al.,

2020]. With so much at stake, biodiversity monitoring systems are now being developed to track

these complex patterns—the winners, the losers, the just differents—and to mitigate the effects of

change.

A series of biodiversity monitoring frameworks have recently been developed to systematically
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assess change for multiple taxa over large extents [Scholes et al., 2012, Fernández et al., 2015]. These

monitoring frameworks have been shaped in large part by open access to biodiversity data [Kattge

et al., 2011, Jetz et al., 2012, Metzger et al., 2013, Culina et al., 2018] as well as access to an

array of modeling tools to analyze these data [Butchart et al., 2010, Pettorelli et al., 2016, Gorelick

et al., 2017]. Most contemporary monitoring frameworks map biodiversity patterns according to

the Essential Biodiversity Variables framework, a hierarchical grouping of metrics that quantify

the variation in genes, species, communities and ecosystems [Pereira et al., 2013]. Inspired by the

Essential Climate Variables framework, these metrics are i) biological, ii) sensitive to change, and

iii) ecosystem agnostic, meaning they can be mapped anywhere. This definition is broad enough

to include patterns of ecosystem structure, like aboveground biomass or habitat fragmentation,

which are not often referred to as biodiversity per se. This flexible and inclusive framework—which

extends beyond a narrower definition of biodiversity as patterns of species richness, evenness and

abundance—is now the standard for global monitoring systems, as it has been adopted by the

intergovernmental Group on Earth Observations [GEO BON, 2017].

While the amount of open biodiversity data is now nothing short of incredible—the Global

Biodiversity Information Facility (https://www.gbif.org) now hosts over 1.6 billion unique species

occurrence records—the data gaps faced by monitoring systems are too wide to be bridged by in situ

biodiversity data alone. The spatial, taxonomic and temporal gaps in open biodiversity data are well

documented [Beck et al., 2014, Hortal et al., 2015, Geijzendorffer et al., 2016], and a central task

for the global biodiversity mapping community is to develop modeling approaches that address bias

issues and extrapolate from incomplete records to map large extents.

Earth observations data, especially satellite imagery, are a natural compliment to in situ data

because they provide consistent measurements of terrestrial ecosystems over time, characterising

biodiversity patterns in accessible and inaccessible areas alike. And plenty of data are available: at

least 44 satellite constellations have been launched by 20 space agencies since 1977, which have been

used to measure at least 15 different biodiversity patterns (Table B.1). But using satellites to map

biodiversity is not a straightforward task. Satellites measure patterns of electromagnetic radiation,

like spectral radiance, thermal emmissivity, or microwave backscattering, which are not in biological

units of measurement. Given this fundamental difference in data types, it is worth reviewing the

technical and conceptual basis for mapping biodiversity from earth observing sensors. How are

https://www.gbif.org
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satellite measurements converted from units of energy into metrics that are biological, sensitive to

change, and ecosystem agnostic?

1.2 Biodiversity Mapping with Earth Observations Data

The majority of earth observing satellites are passive optical sensors that measure the amount of solar

irradiance reflected by the earth’s surface, typically in the spectrum of visible to shortwave infrared

light (0.4-2.5 µm). Terrestrial vegetation, which covers the majority of the land surface, interacts with

light in three ways. It absorbs light, with photosynthetic pigments harvesting photons to drive the

electron transport chain and generate ATP. Vegetation also transmits light, often as a photoprotective

mechanism to reduce potential molecular damage from harmful infrared radiation. The remaining

light is reflected. This can be bidirectional, reflecting energy at an equal and opposite angle to the

light source and normal to a leaf’s surface, or it could be refracted and scattered spherically through

the leaf tissue. The amount of light absorbed, transmitted, or reflected varies by wavelength and

varies in response to many biophysical factors. Since most earth observing sensors measure reflected

light, it is critical to understand the ecological processes driving vegetation reflectance patterns.

Vegetation reflectance is driven by four general factors:

1. Leaf biochemistry, including the concentrations of pigments and defense compounds (Fig. 1.2A).

2. Plant resource use, including leaf water content and nitrogen content (Fig. 1.2B).

3. Leaf structure, including cell wall composition (e.g., cellulose and lignin concentrations) and

the amount of intracellular air space (Fig. 1.2C).

4. Canopy structure, including the number and orientation of leaves on a plant (Fig. 1.2D).

This is also important in the context of biodiversity monitoring because these four factors are also

indicators for discriminating between species. Plant biochemistry is well-conserved among individuals

of the same species [Kokaly et al., 2009, Asner et al., 2011, Funk et al., 2017], as are resource

use patterns and leaf and canopy structure patterns [Hallé et al., 1978, Townsend et al., 2007].

Interspecific variation in these patterns is driven by resource access, competition and co-evolution,

leading to niche partitioning and differentiation along multiple niche axes [Wright et al., 2004, Osnas

et al., 2013]. Reflectance patterns therefore contain information that could be used to classify
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Figure 1.2: Simulated vegetation reflectance spectra showing the nonlinear effects of variation in
four leaf and canopy properties: (A) leaf chlorophyll content, (B) leaf equivalent water thickness,
(C), leaf mass per area, and (D) leaf area index. All spectra were generated using the PROSAIL
coupled leaf and canopy model [Jacquemoud et al., 2009] using a range of global parameter values
[Rivera et al., 2013]. For (A)-(D), each parameter was set to the global mean, with the exception of
the focal parameter, which varied in a range from min and max of the 95% range. Bands dominated
by atmospheric water vapor concentrations (1.3-1.45 µm and 1.8-1.96 µm) were removed.

species identities in sufficiently detailed optical data. The methods that decompose these signals

to map species traits and identities, or patterns of ecosystem structure and function, are referred
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to throughout this work as methods for measuring biodiversity patterns. Due to multiple forms of

covariance—including covariance between traits as well as covariance from each trait propagating

signal across the reflectance spectrum—disentangling the effects of each factor is a major challenge.

Chapter 2 is a review of some of the scale-dependent challenges to signal decomposition in the context

of biodiversity mapping, and Chapter 3 describes a machine learning method that overcomes some

of these challenges through ecologically-informed data preprocessing to identify tree species in high

resolution imagery.

In addition to passive optical sensors, there is a diverse array of earth observing sensors that

measure other biologically and ecologically important patterns. Thermal sensors measure midwave (3-

8 µm) and longwave (8-10 µm) emmissivity patterns, which can be used to map surface temperature

patterns [Li et al., 2013]. Microwave instruments are sensitive to the volume of liquid or atmospheric

water, depending on the sensor, tracking patterns ranging from precipitation to canopy water content

[Hou et al., 2013, Konings et al., 2019]. Even cloudy pixels in optical data, which make up around

60% of observations and are generally a nuisance for biodiversity mapping, have been used to refine

the extents of cloud forests and improve predictions of fog-dependent species distributions [Wilson

and Jetz, 2016].

These patterns are useful in biodiversity monitoring contexts despite violating the “biological”

requirement to be considered Essential Biodiversity Variables. Niche use patterns are often defined

by temperature, precipitation, and cloud cover patterns, placing abiotic constraints on the spatial

distributions of species (which are indeed biological, sensitive to change, and can be mapped across

ecosystems). Since these measurements are often used as predictive features in spatial biodiversity

models, these data are referred to throughout this document as useful for modeling biodiversity

patterns. Chapter 2 explores the scale-dependent challenges of modeling biodiversity patterns with

earth observations data, and is especially concerned with species distribution modeling examples.

Chapter 4 applies the lessons learned from those use cases to modeling the spatial distributions

and niche use patterns of two globally-invasive mosquito arbovirus vectors, Aedes aegypti and Ae.

albopictus, which are expected to continue expanding to new regions as temperature and precipitation

patterns shift with climate change [Tjaden et al., 2018, Ryan et al., 2019].
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1.3 Dissertation Themes

There are three general themes explored in this dissertation. First is regarding the role of spatial and

temporal measurement scales in determining which biodiversity patterns can be detected by earth

observations sensors, including what drives signal variance at each scale. Changing measurement

scales, both by definition and in practice, changes the biological variation within and between

measurements, and nonlinear patterns often emerge at ecological boundaries known as domains of

scale. The transition from measuring leaf reflectance to measuring canopy reflectance is an example

of these nonlinear effects. Light traveling through a canopy is absorbed, transmitted and reflected

by individual leaves, and the transmitted and scattered photons can be absorbed, transmitted, or

reflected by other leaves within the canopy. Since the amount of light absorbed, transmitted, or

reflected varies by wavelength, plant canopies are spectrally distinct from the individual leaves that

comprise them, with dense canopies absorbing more visible light and scattering and reflecting more

infrared light. This is the mechanistic basis for retrieving forest structural patterns like leaf area

index from optical data [Jordan, 1969]. While some changes propagate across scales, like changes

in chlorophyll concentrations, the methods for measuring these changes depends on the scale of

analysis, as canopy structure introduces additional spectral variance that covaries with pigment

changes. Identifying the appropriate domains of scale for analysis is a critical when measuring and

modeling biodiversity patterns, and the example above is explored in-depth in Chapter 3.

The second theme of this dissertation concerns the Goldilocks principle. Considering the global

nature of the field, ecology was previously a data-scarce discipline, as many central ecological

theories were derived from data on a single species, a single community, or a few islands [Grinnell,

1917, Hubbell, 2001, MacArthur and Wilson, 1967]. The past decade has upended this trend, as open

and standardized biodiversity data are more abundant and accessible than ever. So, too, are global

earth observations data. But this flood of information can be overwhelming. This dissertation explores

approaches to combining incomplete species data (“too little”) with abundant earth observations

data (“too much”) to map patterns of biodiversity that are “just right.” Chapter 3 decomposes

426 spectral reflectance bands from airborne imaging spectroscopy data into principal components

finding that, with feature selection, only around 20-30 components were required to discriminate

between species. Chapter 4 analyzes over 8,000 species occurrence records and distills 16 years of

daily satellite imagery into descriptive metrics of climate, habitat and resource use across Latin
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America and the Caribbean to quantify constraints on niche use for Ae. aegypti and Ae. albopictus,

mapping the potential distributions of these arbovirus disease vectors at continental scales.

The final theme of this dissertation is the use of biomimicry: selecting and training machine

learning models to approximate mechanistic ecological models. Commensurate with the expansion of

open data, machine learning methods for analyzing ecological data have recently proliferated [Pal,

2005, Phillips et al., 2006, Hastie et al., 2009, Elith et al., 2011, Brodrick et al., 2019]. These are

essential tools for identifying novel patterns in large datasets where mechanistic relationships are

unclear. But they are also prone to overfit to spurious, non-biological patterns, especially in spatial

contexts [Hawkins, 2012, Fourcade et al., 2018]. I approach the problem in this dissertation by

carefully selecting machine learning models that mimic well-known ecological processes, using data

that has been transformed to fit model assumptions. Chapter 3 uses decision tree ensembles to predict

tree species identities based on decomposed reflectance data, approximating a dichotomous tree

and morphological trait-based taxonomy. Chapter 4 fits non-linear and smoothly varying response

functions to climate, habitat, and resource use patterns for Ae. aegypti and Ae. albopictus, which was

designed to mimic thermal response functions characterized for those vectors in laboratory settings

[Mordecai et al., 2019].

Together, this work further develops the technical and conceptual basis for building biodiversity

monitoring systems that carefully integrate earth observations and in situ data. However, much

work remains to actually build these systems and provide the data to the right stakeholders who can

use it to inform conservation and land management decisions [Guerry et al., 2015, Ramirez-Reyes

et al., 2019]. The end of the last decade marked the time to deliver on the promises of the Ecosystem

Services framework; now is the time to deliver on the promise of biodiversity monitoring [Daily et al.,

2009, IPBES, 2019].
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Chapter 2

Pattern and Scale in Ecology and

Earth Observations Science

Christopher B. Anderson

2.1 Abstract

Human activity and land-use change are dramatically altering the sizes, geographical distributions

and functioning of biological populations worldwide, with tremendous consequences for human

well-being. Yet our ability to measure, monitor and forecast biodiversity change–crucial to addressing

it—remains limited. Biodiversity monitoring systems are being developed to improve this capacity by

deriving metrics of change from an array of in situ data (e.g. field plots or species occurrence records)

and Earth observations (EO; e.g. satellite or airborne imagery). However, there are few ecologically

based frameworks for integrating these data into meaningful metrics of biodiversity change. Here,

I describe how concepts of pattern and scale in ecology could be used to design such a framework.

I review three core topics: the role of scale in measuring and modelling biodiversity patterns with

EO, scale-dependent challenges linking in situ and EO data and opportunities to apply concepts of

pattern and scale to EO to improve biodiversity mapping. From this analysis emerges an actionable

approach for measuring, monitoring and forecasting biodiversity change, highlighting opportunities

to establish EO as the backbone of global-scale, science-driven conservation.

10
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2.2 Introduction

Global biodiversity monitoring is a crucial but challenging task, as human activities are changing the

structure and composition of biological populations at all taxonomic levels [Dirzo et al., 2014, Ceballos

et al., 2017]. Mitigating biodiversity loss will require understanding the rates, magnitudes and

geography of these changes [Laurance et al., 2012, Mendenhall et al., 2014]. However, considering

the scope of action required for mitigation, our knowledge of global biodiversity change remains

limited [Daily, 1999, Pereira et al., 2012]. Furthermore, what is known about biodiversity change is

complicated by taxonomic, geographical and recency biases [Boakes et al., 2010, Donaldson et al.,

2016, Gonzalez et al., 2016].

Novel biodiversity monitoring systems are being developed to overcome these biases by system-

atically assessing change for multiple taxa over large extents [Scholes et al., 2008, Scholes et al.,

2012, Fernández et al., 2015]. To support these systems, several groups have developed novel ap-

proaches to monitor species, communities and ecosystems over time using globally consistent metrics

of change [Butchart et al., 2010, Jetz et al., 2012, Metzger et al., 2013, Pereira et al., 2013]. These

metrics are biological, sensitive to change, and ecosystem agnostic, enabling consistent monitoring

protocols worldwide [GEO BON, 2017]. These efforts have been greatly bolstered by increasing

access to globally available in situ biodiversity observations [Geijzendorffer et al., 2016, Culina et al.,

2018]. However, as in situ data alone are often insufficient for assessing global diversity patterns

(sensu the Linnean and Wallacean shortfalls [Bini et al., 2006, Brito, 2010]), researchers have looked

for complementary data to support monitoring efforts.

Earth observations (EO; e.g. satellite or airborne imagery) complement in situ data by providing

repeat, thematically consistent and spatially continuous measurements of terrestrial ecosystems,

characterising biodiversity patterns over large, undersampled areas. However, linking fine-scale field

and EO data faces many challenges, including incomplete sampling efforts (i.e., where field measure-

ments do not adequately characterise the extent of environmental variation; [Marvin et al., 2014])

and reconciling scale mismatches (e.g., where field plots are much smaller than EO measurements).

Developing EO-based biodiversity monitoring systems will require a comprehensive approach to link

these data [Turner, 2014, Pettorelli et al., 2016].

Scale plays a key role in both ecology and EO science, and identifying shared scaling dynamics

could provide a basis for bridging these disciplines. Understanding the roles of spatial and temporal
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scales in biological communities is a central topic in ecology, and is referred to as the problem of

pattern and scale [Wiens, 1989, Levin, 1992]. The problem of pattern and scale emphasises that

multiple ecological processes often determine the spatial distributions of biodiversity patterns, and

that these processes can act across multiple spatial and organismal scales [Withers and Meentemeyer,

1999, Waring and Running, 2010, Chase and Knight, 2013]. Therefore, there is rarely a single

measurement scale that best identifies how specific processes drive patterns [Hutchinson, 1953].

EO measurements are subject to similar scale dependencies: the grain size of an EO sensor often

determines which patterns can be measured (Fig. 2.1) [Lechner, 2010, Anderson, 2012, Nagendra

et al., 2013], and multi-scale EO analyses can reveal the influences of multiple processes driving

biodiversity patterns [Keil et al., 2012, Taylor et al., 2015]. Applying concepts of pattern and scale

in ecology to EO could provide a means to better link these fields, paving the way for improved

biodiversity monitoring.

Here, I review the scales at which EO have been used to measure and model metrics of biodiversity

change, and the role of scale in linking field data with EO. This is not strictly a review of which

biodiversity patterns EO can measure (sensu [Roughgarden et al., 1991, Turner et al., 2003, Wang

et al., 2010, Pettorelli et al., 2014a, Lausch et al., 2016]). Instead, this review addresses three

questions:

1. At what scales have current and historical EO been used to measure or model spatial biodiversity

patterns?

2. What are the major challenges linking field-based and EO-based biodiversity measurements,

and how does scale impact these challenges?

3. How can concepts of pattern and scale, applied to EO, facilitate the translation of biodiversity

patterns across scales?

2.3 Components of Pattern and Scale in Ecology

Explorations of pattern and scale in ecology focus on two distinct but related measurement scales:

grain size and extent. In this review, I refer to these scales in a spatial sense, though temporal

grain size could describe the frequency of observations (e.g., one diurnal cycle for net primary

productivity) and temporal extent could describe the total time over which an ecological process
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Figure 2.1: Spatial and temporal and grain sizes for 44 current and historic satellite Earth observation
(EO) sensors, colored by EBV class. Several sensors have been used to measure multiple biodiversity
patterns, and the most cited or most novel were selected in these cases.

occurs (e.g. phenological variation throughout a year). Furthermore, I adopt the classes and metrics

of biodiversity change from the Essential Biodiversity Variables framework [Pereira et al., 2013],

and refer to these metrics as biodiversity patterns. This framework captures the multiple biological

scales of diversity (i.e., variation in genes, species, communities and ecosystems) as opposed to a
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more narrow interpretation that refers to biodiversity as variations in species richness, abundance

and evenness. I believe these disaggregated classes and metrics more comprehensively address the

patterns that can be measured and modelled using EO. In this section I discuss how concepts of

pattern and scale in ecology apply in biodiversity and EO contexts, then I review domains of scale,

which constrain efforts to generalise patterns across scales. See the Glossary for clarifications on the

terms and acronyms used.

2.3.1 Changing Measurement Scales

Measurement scales are often selected to understand biodiversity patterns or ecological processes

in a specific region, or for a specific species, population or ecosystem. A key scaling dynamic is

that when the scale of measurement changes, the variation within that measurement is also subject

to change [Wiens, 1989, Levin, 1992]. For example, early biodiversity/ecosystem function research

suggested the relationship between species richness and productivity to be unimodal, predicting

peak biomass accumulation at intermediate diversity for both primary and secondary productivity

[Rosenzweig and Abramsky, 1993]. However, this functional form was shown to be an artefact of

plot size as opposed to any ecological process [Oksanen, 1996], and a global synthesis found mixed

evidence for a generalised relationship in any form [Adler et al., 2011]. Recently, however, long-term

studies addressing scale directly have demonstrated a positive yet saturating diversity-productivity

relationship across multiple ecosystem [Liang et al., 2016, Hungate et al., 2017].

Measurements of community-scale patterns, like species richness and turnover (i.e. α and β

diversity), have also been shown to vary directly with scale [Rosenzweig, 1995]. Coarse grains are

expected to contain higher species richness per grain, and thus lower species turnover between grains

[Nekola and White, 1999, Whittaker et al., 2001]. This is because larger grains are expected to

contain more rare species and more environmental variation (e.g. more variation in niche space; [Keil

et al., 2015]. Indeed, [Hurlbert and Jetz, 2007] showed systematic increases in species richness at

coarser grain sizes for birds in South Africa and Australia. Similarly, species turnover has been shown

to decrease at coarser grains for birds in Britain and North America [Mac Nally et al., 2004, Gaston

et al., 2007], and for mammals in Mexico [Arita and Rodriguez, 2002].

Measurement scales likewise determine which biodiversity patterns can be measured by EO

(Fig. 2.1). Satellite EO have historically focused on measuring ecosystem-scale patterns, due to the
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coarse grain sizes of historic sensors. Coarse grain EO sensors measure ecosystem-scale patterns, like

disturbance regime [Wang et al., 2012, Kogan et al., 2015] and ecosystem extent [Maillard et al.,

2008, Bartsch et al., 2009]. Fine-grain sensors measure species- and community-scale patterns like

species occurrences [Immitzer et al., 2012] and taxonomic diversity [Khare et al., 2018]. Measuring

species traits has likewise proven challenging due to difficulties distinguishing individual organisms in

EO imagery [Nagendra et al., 2013, Jetz et al., 2016]. But some plant traits, like canopy nitrogen

content and photosynthetic rates, can be retrieved even at moderate grain sizes [Martin et al.,

2008, Serbin et al., 2014]. High frequency measurements can map temporally sensitive processes like

vegetation phenology [Bradley et al., 2007], but high frequency, continuous measurements often come

at the expense of coarser grain sizes. Fortunately, an increasing number of fine-grain EO sensors now

in orbit is enabling EO biodiversity mappers to focus on more species- and community-scale patterns

(Fig. 2.2) [Butler, 2014].

There are key similarities in scaling dynamics between field and EO data: grain size and extent

both constrain within and between-grain measurement variation. Large field plots tend to contain

more species per plot, and lower turnover between plots. Likewise, large EO pixels tend to contain

more organisms per grain, and lower turnover between grains. This constrains measurement specificity.

However, the grain size of an EO sensor only constrains the smallest unit of measurement; these data

can be spatially aggregated to larger scales [Fisher, 1997]. For example contiguous pixels measuring

the same tree could be aggregated to delineate a single crown, or clusters of forested pixels could be

aggregated to delineate forest fragments [Yao et al., 2015]. This enables comparisons between crowns

or across fragments, instead of pixels, helping bridge the gap between spatial and biological scales.

This is known as object-based image analysis [Blaschke et al., 2008], which is likely to become more

common in biodiversity monitoring as novel segmentation algorithms are tuned for EO [Krizhevsky

et al., 2012, Basu et al., 2015]. And though this approach facilitates ecological interpretations of EO

data, there are key scaling dynamics associated with aggregating data across scales.

2.3.2 Domains of Scale

One tenet of the problem of pattern and scale in ecology suggests that, since multiple ecological

processes often drive spatial biodiversity patterns, there is rarely a single scale at which any pattern

must be examined [Hutchinson, 1953, Levin, 1992]. These patterns are often examined at multiple
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points along biological, spatial or temporal scale spectrums in order to understand how multiple

processes drive patterns. For example, the drivers of net primary productivity in plants could be

examined at leaf, whole plant and landscape scales. The leaf, plant and landscape, here, represent

domains of scale: the scales over which patterns either do not change, or change monotonically with

changes in scale [Wiens, 1989]. In this example, fine-scale processes, like intra-crown shading, may

drive the majority of variation in leaf-scale productivity, but may be less important at landscape

scales, where ecosystem processes like resource availability drive the majority of variation [Field

et al., 1995]. Partitioning biodiversity patterns into genetic, species, community and ecosystem-scale

patterns organises them as domains of scale; the processes that drive variation in species-scale

patterns are expected to drive variation in ecosystem-scale patterns through separate but potentially

nested pathways [Pereira et al., 2012, Pereira et al., 2013].

Constraining measurements and models to discrete domains of scale is key for simplifying

predictions of how species respond to environmental change [Field, 1991]. Multi-scale analyses have

been used to identify domains of scale, revealing where transitions across scales has nonlinear effects

on observed patterns [Palmer and White, 1994]. In community ecology, hierarchical regression models

have been employed to this end [Legendre et al., 2005]. For example, [Keil et al., 2012] tested how

β-diversity patterns for birds, butterflies, plants, amphibians and reptiles across Europe varied with

distance, climate and land cover. They found β-diversity (here, dissimilarity) decreased systematically

at coarser grain sizes for each taxon. Their hierarchical analysis found climate was important for

predicting β-diversity patterns at coarse grain sizes, and land cover was important at fine-grain

sizes, though these effects varied by taxon. Their results suggest that efforts to predict changes in

turnover should assess the effects of multiple domains of scale simultaneously, and that these scale

dependencies are taxon-specific.

The domains of scale where processes drive patterns may not always be known a priori, however.

These are often identified using multi-scale sensitivity analysis. For example, [Mendenhall et al., 2011]

developed a multi-scale model to predict how bird community composition changed with land cover

change in Costa Rica. They assessed species turnover along tree cover gradients, finding turnover

varied nonlinearly with cover at both fine and coarse grain sizes. Their results suggested there are

two domains of scale over which tree cover patterns determine turnover patterns for birds (perhaps

tracking habitat and resource availability, respectively; [Morrison et al., 2012]). Furthermore, their
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Figure 2.2: Temporal extents of current and historic satellite sensors, colored by EBV class. Tempo-
rally coincident measurements can be jointly analyzed in a multi-sensor fusion framework to increase
data dimensionality.

results suggested tree cover change could serve as a proxy to predict turnover in other communities.

Indeed, [Mendenhall et al., 2016] found tree cover change predicted changes in composition for

understory plants, non-flying mammals, bats, reptiles and amphibians. Furthermore, they found the

grain size of tree cover which best predicted turnover varied by taxon. Their work highlights one
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approach to mapping biodiversity change with EO – identifying domains of scale through multi-scale

sensitivity analysis, then modelling turnover via regression with EO-derived environmental features.

2.4 Measuring and Modeling Biodiversity Patterns with EO

There are currently two principal paradigms for mapping biodiversity patterns with EO [Turner

et al., 2003]. First is to directly measure species, community or ecosystem-scale patterns. Examples

of this paradigm include identifying individual organisms within a species [Gairola et al., 2013] or

mapping the extent of an ecosystem [Henderson and Lewis, 2008]. Second is to model biodiversity

patterns indirectly using EO as predictive environmental features. Examples of this paradigm include

modelling species richness from measurements of habitat structure [Saatchi et al., 2008], or modelling

species distributions and turnover using land cover maps [Guisan and Thuiller, 2005, Keil et al.,

2012]. Here I review the roles of measurement type and measurement scales in these paradigms,

focusing on biodiversity patterns mapped by current and historic spaceborne sensors that can be

accessed by biodiversity monitoring systems (Table B.1).

2.4.1 Measuring Biodiversity Patterns

EO measurements of biodiversity patterns are characterised by three key properties: sensor type,

sensor fidelity and measurement scales [Pettorelli et al., 2014b, O’Connor et al., 2015]. Sensor

type determines which patterns can be measured, sensor fidelity constrains the variation in those

measurements, and measurement scales determine the amount of variation within and between

measurements [Jensen and Lulla, 1987]. Passive sensors, such as multispectral sensors and imaging

spectrometers, measure patterns of ecosystem function, like leaf area index [Fensholt et al., 2004],

vegetation phenology [Fan et al., 2015] or disturbance regime [Feng et al., 2008]. Active sensors,

such as radio or light detection and ranging sensors (i.e., radar and lidar), often measure patterns

of ecosystem structure, like tree height [Lefsky et al., 2005] and ecosystem extent [Bartsch et al.,

2009]. These distinctions are not axiomatic; multiple sensor types have been used to measure the

same pattern [Pohl and Van Genderen, 1998]. Both radar and multispectral sensors have been used

to measure tree cover, for example. Radar sensors map tree cover by measuring woody structural

and hydrological characteristics [Walker et al., 2010, Shimada et al., 2014], and multispectral sensors

map tree cover by measuring leaf optical properties like pigment concentrations [Sims and Gamon,
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2002, Sexton et al., 2013].

Using multiple sensors to map a single biodiversity pattern can improve model accuracy and

reduce sensor-specific uncertainties, and is known as multi-sensor fusion [Hall and Llinas, 1997].

Consider, again, the application for tree cover mapping. Though multispectral sensors are sensitive

to pigment concentrations, measuring tree cover in leaf-off conditions is a challenge; exposed branches

are optically similar to dried grass or other non-photosynthetic vegetation [Asner, 1998]. Radar is

sensitive to woody biomass regardless of phenology. but can itself be noisy due to speckling [Lee

et al., 1994]. To obviate this issue, [Naidoo et al., 2016] mapped cover in a South African savannah

by combining multispectral and radar measurements. Combined, they mapped tree cover with

90% accuracy, which was 12% higher than using either sensor independently. Multi-sensor fusion

approaches to biodiversity mapping hold great promise for reducing sensor-specific uncertainties,

and are poised to become more valuable as access to novel sensor types increases (Fig. 2.2) [Butler,

2014, Schulte to Bühne and Pettorelli, 2018].

Comparing measurements from similar sensor types with different grain sizes has been used to

assess the importance of scale in measuring biodiversity patterns. For example [Brown et al., 2006]

compared NDVI measurements from four spaceborne multispectral sensors and found that up to 20%

of the measurement variance between sensors was driven by differences in grain size. Furthermore,

[Garrigues et al., 2006] found that changes in grain size explained to up to 50% of the variance

in comparisons of multi-scale leaf area index measurements, which increased at coarser grains and

in spatially heterogeneous landscapes. Comparing these spatial uncertainties to the radiometric

calibration uncertainties of EO sensors (i.e. sensor fidelity), which are often between ±5 − 10%

absolute radiance [Chander et al., 2009], suggests that differences in measurement scales can be at

least as important as differences in sensor fidelity for measuring biodiversity patterns. The physical

drivers of this scale dependence have been explored with radiative transfer models, particularly for

patterns of ecosystem function [Asner et al., 1998, Jacquemoud et al., 2009], but should be further

quantified for other biodiversity patterns.

2.4.2 Modeling Biodiversity Patterns

Biodiversity patterns that are difficult to measure directly with EO are often modelled as a function

of environmental features (Fig. 2.3). There are many approaches to modelling biodiversity patterns
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Figure 2.3: Biodiversity patterns are often modelled using EO data at a single spatial scale. (a)
Conceptual model of how EO have been used to predict biodiversity patterns using supervised
modelling approaches. (b) [Mendenhall et al., 2011] modeled bird community similarity as a function
of tree cover across Coto Brus, Costa Rica. (c) [Saatchi et al., 2007] modeled aboveground biomass
distributions across Amazonia. (d) [Saatchi et al., 2008] modeled tree species distributions across
Amazonia.

with EO, including models of species-scale (Fig. 2.3d) [Saatchi et al., 2008], community-scale (Fig.

2.3b) [Mendenhall et al., 2011] and ecosystem-scale biodiversity patterns (Fig. 2.3c) [Saatchi et al.,

2007]. These approaches typically resample all data layers to a uniform grain size and extent,

occasionally after multi-scale sensitivity analysis [McGarigal et al., 2016]. Here I briefly discuss

models of individual species distributions [Guisan and Thuiller, 2005] and models of community-scale

patterns like α- and β-diversity [Rocchini, 2007]. These modelling methods have been reviewed

elsewhere [Gillespie et al., 2008, Rocchini et al., 2010, Pettorelli et al., 2014b], but this section reviews

role of scale in these approaches.
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Species distribution models (SDMs) predict species geographical distributions across an extent as

a function of environmental features that constrain niche use and niche availability [Soberon and

Peterson, 2005]. There have been many discussions on the importance of feature selection in SDM

[Booth et al., 2014, Brandt et al., 2017, Fourcade et al., 2018], but some key reviews have emphasised

that scale selection can play a similarly important role [Mayor et al., 2009, McGarigal et al., 2016].

Even so, studies addressing scale directly have found equivocal results. For example [Guisan et al.,

2007] modelled bird and plant distributions at multiple grain sizes, finding only small decreases in

model accuracy at coarser grain sizes on average. Disaggregating these results by taxon, however,

revealed significant decreases in accuracy at coarser grains for all plants, but only some birds. In

addition, species with the least training data saw the largest decreases in accuracy. [Seo et al., 2009]

further explored these patterns in nine plant species, comparing both model accuracy and the spatial

patterns of distributions. They found model accuracy decreased consistently at coarser grain sizes,

and that these decreases were species-specific. They also found significant spatial disagreement

between models of varying grain size for each species, which could have major consequences for

spatial conservation planning [Faleiro et al., 2013].

There are two principal approaches to modelling community-scale patterns with EO. First is

to predict the distributions of all species in a community, then overlay these outputs to estimate

community composition (i.e. stacked SDMs; [Thuiller et al., 2009, Calabrese et al., 2014]. Second

is to model community diversity metrics via regression [Gillespie et al., 2008, Saatchi et al., 2008].

As above, the role of scale in these approaches has been equivocal. For example [Thuiller et al.,

2015] modelled multiple plant community diversity metrics in the French Alps using a stacked-SDM

approach at varying grain sizes. They found that estimates of functional diversity, phylogenetic

diversity and species richness all varied independently with changes in grain size. Functional diversity

was best predicted at the finest grain size (250 m), whereas phylogenetic diversity and species richness

were best predicted at coarser grain sizes (1000 m), suggesting scale dependence at the community

scale is often process specific.

Assessing scale dependence in regression approaches has been done by comparing species richness

predictions across multiple sensors. For example [Nagendra et al., 2010] modelled plant species

richness using features from a fine grain, low fidelity sensor (IKONOS) and a moderate grain,

high fidelity sensor (Landsat). Since community diversity metrics assess within- and between-grain
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variation, one may expect that fine-grain EO better predict these patterns. On the other hand, high

fidelity measurements may better discriminate the between-grain variation in environmental features

that predict spatial turnover in communities. [Nagendra et al., 2010] found that, despite the coarser

grain size, Landsat-based models better predicted plot-level species richness. Though the IKONOS

data matched the grain size of the field plots, they failed to meaningfully discriminate the spatial

variation in environmental features that predicted spatial richness patterns. Further disentangling

the effects of sensor fidelity from variations in measurement scales will help discriminate sensor

dependence from scale dependence in modelling other biodiversity patterns.

2.4.3 Linking Measurements and Models

EO measurements and models of biodiversity patterns are tightly connected. They are both subject

to pattern-specific scale dependencies, and multi-scale comparisons or sensitivity analyses are essential

for quantifying and understanding these dependencies. Furthermore, when EO measurements are

the features used to model biodiversity patterns, scale-dependent measurement variation becomes

embedded within the models. This might obfuscate process-driven scale dependence for variation

driven by changing measurement scales. Constraining scale-dependent variation in EO measurements

of biodiversity patterns, and disentangling this variation from variation driven by sensor fidelity, will

be key for reducing uncertainties in multi-scale modelling efforts. In the following section I review

some other challenges linking measurements and models of biodiversity patterns, and opportunities

for multi-scale analyses to address these challenges.

2.5 Translating Biodiversity Patterns Across Scales

One central challenge linking field and EO data is overcoming scale mismatches. These mismatches

occur where response and feature data are sampled at disparate and irreconcilable scales. The size of

field plots (i.e., the response data) are often much smaller than the grain size of EO sensors (i.e.,

the feature data), which can obscure key patterns and processes operating between these scales.

For example [Cleveland et al., 2015] modelled spatial patterns of net primary productivity across

the Amazon basin using three models at three scales: from plot data upscaled to the study extent

(0.1ha grain size), from MODIS data collected across the full extent (1 km2 grain size) and from

a community land model (12, 500 km2 grain size). These methods calculated the same average
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net primary productivity across the Amazon, indicating a potential convergence of the processes

driving forest productivity. However, results from the finer-scale methods were shown to be spatially

independent from the others, indicating that they converged on the same average results for different

reasons. In this case, comparing multiple models at mismatched scales that calculated the same

result can make it difficult to disaggregate the role of process from the role of scale in understanding

spatial patterns of productivity.

One key challenge in translating patterns across mismatched scales is capturing the dynamics of

intermediate-scale biodiversity patterns that are poorly characterised by field data. These patterns are

too rare to be characterised by a small number of field plots, and are often difficult to reliably measure

with coarse grained EO. For example, [Fisher et al., 2008] and [Chambers et al., 2009] identified

that tree falls patterns, which tend to be both rare and spatially clustered, are underrepresented in

field plots in the Amazon. Their analyses demonstrated that efforts to model related patterns using

just field data (e.g., carbon sequestration) would necessarily underestimate feedbacks from these

intermediate-scale disturbances. Furthermore, [Marvin et al., 2014] quantified these mismatches

using airborne lidar data, finding between 44 and 85 field plots per forest type would be required to

characterise mean, community-scale carbon and disturbance dynamics. Together, these results suggest

that field measurements should be greatly expanded, or novel data should be used to characterise

intermediate-scale patterns in order to translate patterns across scales.

The challenges presented by scale mismatches can be framed by two tenets of the problem of

pattern and scale: that multiple ecological processes can drive biodiversity patterns, and that there

is rarely a single scale that best identifies how specific processes drive patterns [Wiens, 1989, Levin,

1992]. These tenets suggest that multi-scale analyses, which capture the intermediate-scale patterns

obscured between fine and coarse grain patterns, could improve empirical approaches to mapping

biodiversity patterns with EO. Iteratively modelling patterns with multi-scale EO has been used to

map a range of biodiversity patterns at moderate grain sizes across large extents, and presents an

actionable approach to overcoming some of the challenges presented by scale mismatches.

2.5.1 Multi-scale Modeling

Multi-scale models attempt to obviate scale mismatches through iteratively modelling patterns at

varying grain sizes (Fig. 2.4a). One key innovation of the multi-scale modelling approach was to
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Figure 2.4: Leveraging coincident data from multiple sensors in a multi-scale framework provides
opportunities to translate fine-scale biodiversity patterns across scales. (a) Conceptual model of how
EO data have been used to predict biodiversity patterns using a multi-scale modelling approach.
(b) An example from [Baccini et al., 2012] demonstrating the multi-scale modelling approach for
predicting tropical biomass globally.

leverage intermediate-scale data sources that capture the extent-wide variation in EO features, which

is difficult to cover with field plots alone. For example, [Baccini et al., 2012] developed a benchmark

map of pantropical aboveground biomass using a multi-scale model, a network of field plots, discrete

spaceborne lidar data (4, 900m2) and continuous, coarse grain EO (0.25 km2; Fig. 2.4b). First, they

calibrated an allometric model using biomass plots coincident with lidar-derived tree height data

sensu [Chave et al., 2005]. Next, they applied this model to all tree height measurements, creating

a discrete, global biomass map. Finally, they modelled biomass continuously using a regression

tree model, with lidar-derived biomass as the response and EO data on climate, topography and

ecosystem function as the environmental features. Their final map of aboveground biomass served as

a benchmark for global carbon monitoring [Ciais et al., 2014].

Multi-scale models have also been used to monitor temporal changes using intermediate-scale EO,

overcoming some of the challenges highlighted by [Fisher et al., 2008] and [Marvin et al., 2014]. For
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example, [Baccini et al., 2017] assessed temporal patterns of change in aboveground biomass using

EO measurements of forest growth, disturbance and deforestation. Intermediate-scale disturbance

measurements were essential for capturing the magnitude of change: their results revealed that

disturbance accounts for nearly 70% of forest emissions, and that the Earth’s tropical forests are now

a net source of carbon to the atmosphere. Considering how little is known about the rate, magnitude

and direction of global biodiversity change [Pereira et al., 2012, McGill et al., 2015], I expect these

multi-scale analyses will prove essential for settling debates over other key knowledge gaps [Vellend

et al., 2013, Gonzalez et al., 2016]. These analyses have also proven useful for mapping patterns that

have been difficult to directly measure with publicly-accessible EO data: species traits.

2.5.2 Mapping Plant Functional Traits

Measuring species traits as a complement to species counts has become a priority for biodiversity

science. Traits have been touted as a link between applied and theoretical biodiversity research and

as a means to better represent ecosystem function in Earth systems models [Shipley et al., 2006, Jetz

et al., 2016, Funk et al., 2017]. Plant functional traits (PFTs) are one subset of species traits that

can be mapped using EO, specifically by imaging spectroscopy [Kokaly et al., 2009]. One key benefit

of measuring PFTs with EO is that they can be mapped without having to identify and characterise

every species a priori ; capturing the range and variation in traits is often more important. The

prospective launches of spaceborne imaging spectrometers, such as EnMAP, PRISMA and HISUI,

are currently touted as the best bet for mapping PFTs globally [Stuffler et al., 2007, Galeazzi et al.,

2008, Matsunaga et al., 2011]. Simulations from preparatory campaigns have found mixed results,

however. For example, [Bachmann et al., 2015] demonstrated that the moderate fidelity of these

sensors should lead to high variation in surface reflectance measurements (the basis for measuring

PFTs). Furthermore, the moderate grain size of these sensors (30 m) has been shown to significantly

reduce classification accuracy compared to fine-grain measurements in other contexts [Kruse et al.,

2011]. This decrease in accuracy is expected to be exacerbated for PFTs since canopy structure, not

trait variation, drives the majority of reflectance signal at moderate grain sizes [Yao et al., 2015].

Combined, these sensor- and scale-dependent challenges spell major trouble for trait-based species

mapping. This approach is predicated on the basis that differences in traits between species arise as

a function of interpsecific niche partitioning and intraspecific niche conservation. That is, traits are
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typically conserved within a species and vary between species along axes of e.g. the plant economics

spectrum [Wright et al., 2004]. Tracking these patterns with EO could be for naught if intraspecific

measurement variance is greater than the variance in interspecific measurements.

The implication is that spaceborne trait measurements may not yet provide a panacea for large-

scale species mapping. Fortunately, airborne imaging spectrometers can measure species traits at

the scales of individual organisms, and these measurements can be combined with other EO to

model PFT distributions over large extents (Fig. 2.4a), as [Asner et al., 2016] demonstrated with

a multi-scale modelling approach to map PFTs across the Peruvian Amazon. First they measured

PFTs for all canopy trees in a network of field plots, capturing the physiological range of each trait.

Next they trained regression models using each trait as the response variable, and the imaging

spectroscopy data as features. These trait models were then applied to all airborne data, which

were collected across gradients of elevation, geology and forest type. Finally, they modelled these

traits continuously using the airborne-scale trait maps as the responses, and satellite measurements

of ecosystem structure, ecosystem function, climate and topography as features. Since these traits

vary widely within plots, and more so across the full study extent, the airborne-scale trait maps

were a representative sample of local-scale trait variation across this high diversity region. The

intermediate-scale maps provided more data to train the satellite-based models and, aggregated to

the grain size of the satellite data, obviated problems of sampling effort and scale mismatch.

Applying these multi-scale modelling approaches could enable monitoring similar biodiversity

patterns that have otherwise proven difficult to map over large extents. Though access to intermediate-

scale data has been historically limited, it should increase with the launch of novel fine-grain sensors

[Malenovský et al., 2012]. Monitoring intermediate-scale patterns could be further bolstered by

expanding the scope of airborne mapping by groups like NEON’s Airborne Operations Platform

[Keller et al., 2008], DLR’s Optical Airborne Remote Sensing platform (OpAiRS; [Baumgartner et al.,

2012, Leutner et al., 2012], or the Carnegie Airborne Observatory (CAO; [Asner et al., 2012]). Linking

field, airborne and spaceborne measurements could be used to map fine-scale patterns like species

traits across large extents, generate intermediate-scale data to train and test satellite measurements,

and link the distributions of community and ecosystem-scale patterns to species identities [Clark

et al., 2005, Baldeck et al., 2015]. Furthermore, implementing large-scale airborne mapping efforts

could be done at a fraction of the price of building and launching a satellite [Mascaro et al., 2014a].
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2.6 Frontiers in Monitoring Biodiversity Change with EO

Global biodiversity monitoring systems hold great promise for advancing biodiversity science and

conservation. These systems could be designed to forecast the rate, magnitude and geography of

biodiversity change, identifying opportunities to mitigate human impacts on biological communities.

EO can support monitoring systems by providing consistent and repeat assessments of biodiversity

change; a unique global perspective of our changing biosphere. Applying concepts of pattern and

scale in ecology to EO could link these fields in support of this vision. However, [Estes et al., 2018]

found there is currently little overlap in the ecology literature between studies analysing field data

and studies analysing EO data, highlighting the wide gap between these communities. And the

problems presented by scaling dynamics (e.g. scale mismatches) have helped frame EO science as

distinct from ecology, as subject to different rules and standards. Developing an ecologically based

framework for monitoring biodiversity change with EO will require overcoming this distinction.

There are several key similarities between field and EO data: changing their grain size or extent

fundamentally alters within and between-grain variation, there is rarely a single scale at which any

pattern should be examined, and aggregating measurements to discrete domains of scale can constrain

nonlinear responses to change. These similarities frame EO as an extension of field data; their

differences are more in scale than they are in kind. Multi-scale analyses linking field and EO data

support this, emphasising that targeted field collections are essential for mapping biodiversity patterns

that are difficult to measure independently with EO. In the context of biodiversity monitoring, field

data play three key roles: training EO to map novel biodiversity patterns; developing and testing

forecasts of biodiversity change, and constraining the extents to which we can generalise patterns of

change.

2.6.1 Ecologically Interpreting Sensor Data

One key challenge in measuring biodiversity patterns with EO is converting at-sensor measurements

into biologically meaningful metrics of change (e.g. from at-sensor radiance to percent tree cover).

This is often done empirically via calibration with field measurements. These calibrations require a

lot of data; EO data dimensionality is often very high and the variation in biological communities

that drives measurement variance is similarly high. However, it is difficult for any one research group

to independently collect the field data necessary to capture this variation. One way to overcome this
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challenge is to leverage open data.

Access to open biodiversity data has increased dramatically over the past decade [Kattge et al.,

2011, Jetz et al., 2012, Metzger et al., 2013, Culina et al., 2018], as has access to open EO data

[Nemani et al., 2011, Irons et al., 2012, Gorelick et al., 2017]. And though there are known spatial,

temporal and taxonomic gaps in open biodiversity data [Beck et al., 2014, Geijzendorffer et al., 2016],

extrapolating from incomplete measurements to fill these gaps is a key role for EO. Training global,

multi-scale EO models using centralised and curated field data could provide baseline estimates of

spatial biodiversity patterns that have been otherwise difficult to characterise. These baselines could

be tested independently by researchers with improved local data and local knowledge, identifying

opportunities to improve regional and global models. These analyses could spur modelling and data

collection efforts to fill gaps, and to develop better forecasting tools. These are urgently needed in

ecology [Dietze et al., 2018], and this theme is explored further in Chapter 3.

2.6.2 Reconciling Phenomenological and Process-based Models

Another key role for field data is to develop and test predictive, process-based models of temporal

change. EO are uniquely suited for empirically monitoring change, especially for directly measurable

patterns (e.g. disturbance) [Zhu et al., 2012, Cohen et al., 2016]. Yet forecasting change under

conditions outside the range of historic variation (e.g. under novel climate and land-use scenarios)

remains a challenge for EO. Furthermore, temporal lags between local environmental change and

other scales of change (e.g. for species or community-scale patterns) can obfuscate efforts to identify

the impacts of change [Essl et al., 2015]. Developing process-based models that couple temporal

changes in EO to changes in other biodiversity patterns could address these issues [Korzukhin et al.,

1996, Adams et al., 2013].

While there are many process-based EO models, and many process-based biodiversity models, we

now have the technical capacity to link and test them using open data at multiple scales, identifying

consensus models and key data gaps. Coupling process-based models with long-term, regularly

updated and globally consistent measurements of change from EO could be used to develop early

warning systems for identifying where species, communities and ecosystems will respond to change in

novel ways, and may identify opportunities for science-driven mitigation (Daily 1999; Scholes et al .

2008). This theme is explored further in Chapter 4.
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2.6.3 Bounding the Domains of Scale

Finally, field data are key for constraining how we generalise EO measurements and models of

biodiversity change. One advantage of monitoring change with EO is that measurements are globally

consistent; tree cover change can be mapped across tropical, temperate and boreal forests [Hansen

et al., 2013, Sexton et al., 2013]. This enables other models of change that use tree cover data

as features to be applied globally, such as the models of community composition in [Mendenhall

et al., 2016]. This would be imprecise, however; the relationships between tree cover and community

composition in tropical countrysides may not apply to timber plantations. In other words, this model

is not stationary; the relationships between feature and response variables can change across the

extent of the data [Hawkins, 2012]. The regions over which these relationships are stationary can be

considered domains of scale, constraining the extents to which a model can generalise. It is currently

difficult to identify these domains of scale with EO alone. Several algorithms can be employed to

automate this task for EO (e.g. segmentation, clustering), but field data are key for interpreting

and constraining these extents to biologically meaningful domains, and for testing their accuracy.

Linking field and EO data to identify these domains of scale will be central to ecologically translating

knowledge of local biodiversity patterns to regional and global scales.

2.6.4 Conclusion

After decades of work from biodiversity scientists, EO scientists and conservation groups, the stage is

now set to establish ambitious, science-driven biodiversity monitoring systems. Consistent, repeat

and globally available EO will play a key role in these systems. Scale is a central and unifying concept

for biodiversity and EO sciences, and monitoring change with EO should be based on the principles

and ecology of scale. Global biodiversity monitoring promises to expand our understanding of Earth’s

species, communities and ecosystems and, with luck, could help us discover the wisdom necessary to

conserve them.
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Earth Observations
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3.1 Abstract

Biogeographers assess how species distributions and abundances affect the structure, function, and

composition of ecosystems. Yet we face a major challenge: it is difficult to precisely map species

locations across large landscapes. Novel Earth observations technologies could overcome this challenge

for vegetation mapping. Airborne imaging spectrometers are able to measure plant functional traits at

high resolution, which can be used to identify tree species in high resolution imagery. In this chapter

I describe a trait- and taxonomy-based approach to species identification with imaging spectroscopy

data, which was developed as part of an ecological data science competition. Using data from the

National Ecological Observatory Network (NEON), I classified tree species using reflectance-based

principal components rotation and decision tree-based machine learning models, approximating a

morphological trait and dichotomous key classification inspired by botanical taxonomy.

30
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The model received a rank-1 accuracy score of 0.919, and a cross-entropy cost score of 0.447 on

the competition test data. Accuracy and specificity scores were high for all species, but precision

and recall scores varied for rare species. PCA transformation improved accuracy scores compared

to models trained using raw reflectance data, but outlier removal and data resampling exacerbated

class imbalance problems. This taxonomy-informed approach accurately classified tree species using

NEON data, reporting the best scores among data science competition participants. However, it

failed to overcome several species mapping challenges like precisely classifying rare species. This

method has been published under an open source, open access license, is designed for use with NEON

data, and is publicly available to support future species mapping efforts.

3.2 Introduction

When you get down to it, biogeographers seek to answer two key questions: where are the species,

and why are they there? Answering these simple questions continues to prove remarkably difficult.

The former question belies a data gap; we do not have complete or unbiased information on where

species occur, which is known as the “Wallacean shortfall” [Whittaker et al., 2005, Bini et al., 2006].

Addressing the latter question, however, does not necessarily require data; the drivers of species

abundances and their spatial distributions can be derived from ecological theory and from niche

use models [McGill, 2010]. But evaluating these theoretical predictions does require data. Testing

generalized theories of species abundance distributions requires continuously-mapped presence and

absence records for many individuals across large extents. And while field efforts can assess these

spatial distribution patterns in fine detail, they are often restricted to small extents. Mapping

organism-scale species distributions over large landscapes could help fill the data gaps that preclude

addressing these key biogeographic questions. One remote sensing dataset holds the promise to do so

for plants: airborne imaging spectroscopy.

Airborne imaging spectrometers measure variation in the biophysical properties of soils and

vegetation at fine grain sizes across large extents [Goetz et al., 1985]. In vegetation mapping, imaging

spectroscopy can measure plant structural traits, like leaf area index and leaf angle distribution

[Broge and Leblanc, 2001, Asner and Martin, 2008], and plant functional traits, like growth and

defense compound concentrations [Kokaly et al., 2009, Cavender-Bares et al., 2016]. These traits

tend to be highly conserved within tree species, and highly variable between species (i.e., interspecific
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trait variation is often much greater than intraspecific trait variation) [Wright et al., 2004, Townsend

et al., 2007, Funk et al., 2017]. Trait conservation provides the conceptual and biophysical basis

for species mapping with earth observations data. Airborne imaging spectroscopy has been used to

map crown-scale species distributions across large extents in several contexts [Fassnacht et al., 2016].

These approaches have been applied in temperate [Baldeck et al., 2014] and tropical ecosystems

[Hesketh and Sánchez-Azofeifa, 2012], using multiple classification methods [Feret and Asner, 2013],

and using multiple sensors [Clark et al., 2005, Colgan et al., 2012, Baldeck et al., 2015]. However, this

wide range of approaches has not yet identified a canonical best practice for tree species identification.

In the field, botanists can use plant morphological features and a dichotomous key to identify

tree species. These features include reproductive traits (e.g., flowering bodies, seeds), vascular

traits (e.g., types of woody and non-woody tissue), and foliar traits (e.g., waxy or serrated leaves).

The dichotomous key hierarchically partitions species until each can be identified using a specific

combination of traits, and the keys are aggregated to form a parsimonious taxonomy. Species

classification with imaging spectroscopy is rather restricted in comparison; imaging spectrometers can

only measure a subset of plant traits. This subset includes growth traits (e.g., leaf chlorophyll and

nitrogen content), structural traits (e.g., leaf cellulose and water content), and defense traits (e.g.,

leaf phenolic concentrations and lignin content) [Lepine et al., 2016, Papeş et al., 2010, McManus

et al., 2016]. Furthermore, the interspecific and intraspecific variation in this subset of traits is rarely

known a priori; this precludes the use of a standard, accepted dichotomous key [Kichenin et al.,

2013, Siefert et al., 2015].

Classifying species with imaging spectroscopy instead relies on distinguishing species-specific

variation in canopy reflectance. Several confounding factors drive this variation [Ollinger, 2011, Lausch

et al., 2016]:

1. Measurement conditions, like sun and sensor angles.

2. Canopy structure, including leaf area index and leaf angle distribution.

3. Leaf morphology and physiology (i.e., plant functional traits).

4. Sensor noise.

Measurement conditions and canopy structure tend to drive the majority of spectral variance; up

to 79–89% of the signal is driven by within-crown spectral variation [Baldeck and Asner, 2014, Yao



CHAPTER 3. TAXONOMIC LEARNING FOR TREE SPECIES MAPPING 33

et al., 2015]. Unfortunately, within-crown variation does not help distinguish between species. The

spectral variation useful for discriminate between species is instead driven by differences in the

plant functional traits expressed by a species [Asner et al., 2011, Martin et al., 2018]. Disentangling

trait-based variation from measurement and structure-based variation is thus central to mapping

species with imaging spectroscopy.

In this chapter, I describe an approach to tree species classification using airborne imaging spec-

troscopy data that builds on the above methods and takes a taxonomically-informed approach to data

preprocessing and model selection in order to advance the discussion on best practices. This approach

was developed as a submission to an Ecological Data Science Evaluation competition (ECODSE;

https://www.ecodse.org/) sponsored by the National Institute of Standards and Technology. This

competition provided participants with labeled tree crown data and airborne imaging spectroscopy

data, collected by the National Ecological Observatory Network’s Airborne Observation Platform

(NEON AOP) [Kampe et al., 2010], which was used to identify tree crowns to the species level. The

work described was submitted to the ECODSE competition under the team name of the Stanford

Center for Conservation Biology (CCB), and has since been formalized as CCB-ID.

I first describe the CCB-ID approach to tree species classification using airborne imaging spec-

troscopy data, including both its successes and its shortcomings in the context of this competition,

and close with key opportunities to improve future imaging spectroscopy-based species classification

approaches. The goals of this work are to improve NEON’s operational tree species mapping capacity,

and to reduce technical and operational barriers to mapping plant biogeography over large extents.

3.3 Methods

CCB-ID classifies tree species using trait-based reflectance signal decomposition and decision tree-

based machine learning models. This approach approximates a morphological trait and dichotomous

key model to mapping species taxonomies [Godfray, 2007]. The first section describes data prepro-

cessing procedures, including outlier removal and data decomposition procedures, which were used to

reduce covariance and increase interpretability. The second section describes how the training data

were resampled to reduce biases towards common species, as the training data contained a skewed

distribution of species identities. The third section describes model selection, model training, and

probability calibration, as an expansive series of metrics is required to evaluate classification models

https://www.ecodse.org/
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trained on biased data. The fourth section describes the model performance metrics, and the final

section describes two analyses performed post-ECODSE submission to evaluate the importance of

signal decomposition and feature selection on model performance.

All data were provided by the ECODSE group (https://www.ecodse.org/) and are freely avail-

able from the NEON website (https://neonscience.org). All analyses were performed using the

Python programming language (https://python.org) [Oliphant, 2007] and the following open source

packages: NumPy (http://numpy.org) [der Walt et al., 2011], scikit-learn (http://scikit-learn.

org) [Pedregosa et al., 2011], pandas (https://pandas.pydata.org) ([McKinney and Others, 2010],

and matplotlib (https://matplotlib.org) [Hunter, 2007]. The python scripts used for these anal-

yses were uploaded to a public GitHub repository (https://github.com/earth-chris/ccb-id),

including a build script for a Singularity container to ensure the model is computationally repro-

ducible [Kurtzer et al., 2017].

3.3.1 Data Preprocessing

The input NEON data were “Spectrometer orthorectified surface directional reflectance–flightline

(NEON.DP1. 30008)” products. The canopy reflectance data were preprocessed using two steps:

outlier removal and dimensionality reduction. In the outlier removal step, the reflectance data were

spectrally subset, transformed using principal components analysis (PCA), then thresholded to isolate

spurious values. First, reflectance values from the blue region of the spectrum (0.38− 0.49µm) and

from noisy bands (1.35− 1.43µm, 1.80− 1.96µm, and 2.48− 2.51µm) were removed. These bands

correspond to wavelengths dominated by atmospheric water vapor, and do not track variations in

plant traits [Gao et al., 2009]. This reduced the data from 426 to 345 spectral bands.

Next, these spectrally-subset samples were transformed using PCA. The output components were

whitened to zero mean and unit variance, and outliers were identified using a 3σ threshold. Samples

with values outside of ± three standard deviations from the means (i.e., which did not fall within

99.7% of the variation for each component) for the first 20 principal components were excluded

from analysis. These samples were expected to contain non-vegetation spectra (e.g., exposed soil),

unusually bright or dark spectra, or anomalously noisy spectra [Féret and Asner, 2014]. The outlier-

removed reflectance profiles for each species are shown in Fig. 3.1. Once the outliers were removed,

the remaining spectral reflectance samples were transformed using PCA. This was not performed

https://www.ecodse.org/
https://neonscience.org
https://python.org
http://numpy.org
http://scikit-learn.org
http://scikit-learn.org
https://pandas.pydata.org
https://matplotlib.org
https://github.com/earth-chris/ccb-id
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Figure 3.1: (A-H) Canopy reflectance profiles for eight tree species with mean reflectance values in
black and ± 1 standard deviation in color. (I) Mean reflectance values for all species, with each color
corresponding to the individual species panels.

on the already-transformed data from the outlier removal process, but on the outlier-removed,

spectrally-subset reflectance data.

PCA transformations are often applied to airborne imaging spectrometer data to handle the

high degree of correlation between bands, and these transformations are highly sensitive to input
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feature variation [Jia and Richards, 1999]. Furthermore, transforming reflectance data into principal

components can isolate the variation driven by measurement conditions from variation driven by

functional traits. For example, brightness patterns alone can drive a high percentage of the variance

in reflectance signals, which has nonlinear effects across the full spectrum, but PCA rotation isolates

this variance into a single component. And though trait-based variation drives a small proportion of

total reflectance signal, a single trait can be expressed in up to nine orthogonal components [Asner

et al., 2015]. This is critical for distinguishing between species. After the transformation, the first 100

of 345 possible components were used as feature vectors for the classification models. This threshold

was arbitrary; it was set to capture the majority of biologically-relevant components and to exclude

the noisy components that explain a very low proportion of signal variance.

3.3.2 Class Imbalance

Class imbalance refers to datasets where the number of samples are not evenly distributed among

classes. Imbalanced datasets are common in classification contexts, but can lead to problems if

unaddressed. For example, training classification models with imbalanced data can select for models

that overpredict common classes when the method of model selection doesn’t weight misclassification

penalties relative to the proportion that each class appears in the dataset. The ECODSE training

data were imbalanced: after outlier removal, these data contained a total of 6,034 samples from

nine classes (eight identified species, one “other species” class; Fig. 3.2). The most common species,

Pinus palustris, contained 4,026 samples (66% of the samples) and the rarest species, Liquidambar

styraciflua, contained 62 samples (1% of the samples).

These data were resampled prior to analysis to reduce the likelihood of overpredicting common

species. Resampling was performed by setting a fixed number of samples per class, then undersampling

or oversampling each class to that fixed number. This fixed number was set to 400 samples to

split the difference of two orders of magnitude between the rarest and the most common classes.

This number was arbitrary, but it was selected to approximate the number of per-species samples

recommended in [Baldeck and Asner, 2014]. To create the final training data, classes with fewer

than 400 samples were oversampled with replacement, and classes with more than 400 samples were

undersampled without replacement. The final training data included 400 samples for each of the nine

classes (3,600 samples total). Each sample contained a feature vector of the principal components
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Figure 3.2: Number of training data crowns for each species. Class imbalance is common in ecology
and biogeography, as species abundance distributions typically follow a log series distribution.

derived from the outlier removed, spectrally subset canopy reflectance data.

3.3.3 Model Selection and Probability Calibration

CCB-ID used two machine learning models: a gradient boosting classifier and a random forest

classifier [Friedman, 2001, Breiman, 2001]. These models can fit complex, non-linear relationships

between response and feature data, can automatically handle interactions between features, and have

built-in mechanisms to reduce overfitting [Mascaro et al., 2014b]. They were selected because they

perform well in species mapping contexts [Elith et al., 2008], in remote sensing contexts [Pal, 2005],

and in conjunction with PCA transformations [Rodŕıguez et al., 2006]. Furthermore, these models

are built as ensembles of decision trees, resembling the dichotomous key employed by botanists.

Unlike a dichotomous key, these models are trained to learn where to split the data since the trait

variation that distinguishes species was not known a priori.

These models were fit using hyper-parameter tuning and probability calibration procedures.

Model hyper-parameters were tuned by selecting the parameters that maximized mean F1 scores

in fivefold cross-validation using an exhaustive grid search. The F1 score calculates the weighted

average of model precision and recall (see Model evaluation), and maximizing F1 scores during
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model tuning reduces the likelihood of selecting hyper-parameters that overpredict common classes

and underpredict rare classes. The following parameters were tuned for both models: number

of estimators, maximum tree depth, minimum number of samples required to split a node, and

minimum node impurity split threshold. The learning rate and node split quality criterion were also

tuned for the gradient boosting and random forest classifiers, respectively. All samples were used

for hyper-parameter tuning, and the best model hyper-parameters (i.e., the hyper-parameters that

maximized mean F1 scores in cross-validation) were used to fit the final models.

Prediction probabilities were calibrated (i.e., adjusted) after the final hyper-parameters were

selected, as accurately characterizing prediction probabilities is essential for error propagation and

for assessing model reliability. Well-calibrated probabilities should scale linearly with the true rate

of misclassification (i.e., model predictions should not be under or overconfident). Some decision

tree ensemble methods, such as random forest, tend to be poorly calibrated, however. Since this

type of ensemble averages predictions from a set of weak learners—which individually have high

misclassification rates but gain predictive power as an ensemble—model variance can skew high

probabilities away from one, and low probabilities away from zero. This results in sigmoid-shaped

reliability diagrams [DeGroot and Fienberg, 1983, Niculescu-Mizil and Caruana, 2005].

To reduce these biases, prediction probabilities were calibrated using sigmoid regression for both

the gradient boosting and random forest classifiers. The data were first randomly split into three

subsets: model training (50%, or 200 samples per class), probability calibration training (25%, or

100 samples per class), and probability calibration testing (the remaining 25%). Each classifier

was fit using the model training subset and the tuned hyper-parameters. Prediction probabilities

were calibrated with sigmoid regression using the probability training subset, and internal threefold

cross-validation to assess the calibration. Calibrated model performance was assessed using the

holdout test data. After these assessments, the final models were fit using the model training data,

then calibrated using the full probability training and testing data (i.e., the full 50% of samples not

used in initial model training).

3.3.4 Model Evaluation

During model training, performance was assessed on a per-sample basis using model accuracy and log

loss scores. Model accuracy calculates the proportion of correctly classified samples in the test data
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Figure 3.3: Summary of the classification model metrics calculated on per-pixel and per-species bases.
A confusion matrix was computed for each species, and each metric was calculated in a one-vs-all
fashion.

(Fig. 3.3), and high model accuracy scores are desirable. Log loss assesses whether the prediction

probabilities were well calibrated, penalizing incorrect and uncertain predictions. Low log loss scores

indicate that misclassifications occur at rates close to the rates of predicted probabilities. During

model testing, performance was assessed using rank-1 accuracy and cross-entropy cost [Marconi

et al., 2018]. Rank-1 accuracy was calculated based on which species ID was predicted with the

highest probability. The cross-entropy score is similar to the log loss function, but was scaled using

an indicator function. These can be interpreted in similar ways to accuracy and log loss scores; high

rank-1 accuracy and low cross-entropy scores are desirable [Hastie et al., 2009].

Secondary model testing metrics were calculated for each species using the test data. These

included model specificity, precision, and recall (Fig. 3.3). These metrics reveal model behavior

that accuracy scores may obscure. Specificity assesses model performance on non-target species,

penalizing overprediction of the target species (i.e., a high number of false positives). Precision also

penalizes overprediction, but assesses the rate of overprediction relative to the rate of true positive

predictions. Recall calculates the proportion of true positive predictions to the total number of

positive observations per species. Higher values are desirable for each. These metrics were calculated

to aid interpretation, but were not used to formally rank model performance.
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Performance during model training was assessed at the sample scale, meaning the model per-

formance metrics were calculated on every pixel (i.e., sample) in the training data. However, the

competition evaluation metrics were calculated using crown-scale prediction probabilities, so perfor-

mance metrics were calculated after aggregating each pixel from individual trees to unique crown

identities. To address this scale mismatch, prediction probabilities were first calculated for each

sample in a crown using both gradient boosting and random forest models, then the sample-scale

probabilities were then averaged by crown.

3.3.5 Decomposition Analysis

Two analyses were performed to assess how PCA transformations affected model performance. Prior

to these analyses, I bootstrapped the original model fits to assess model variance. I then compared

these bootstrapped fits to models trained with the spectrally-subset reflectance data instead of the

PCA transformed data. This was done to evaluate the change in model performance attributed to

the PCA rotation. Next, I compared models trained using a varying number of principal components.

These models were trained using npcs ∈ (10, 20, . . . , 345) as the input features, with 345 being the

maximum number of potential components after spectral subsetting. These comparisons assessed

whether the PCA transformations improved model performance and how changing the amount of

spectral variation in the feature data affected performance. These were each bootstrapped 50 times

to derive an unbiased estimate of the variance in each model.

3.4 Results

CCB-ID performed well according to the ECODSE competition metrics, receiving a rank-1 accuracy

score of 0.919, and a cross-entropy cost score of 0.447 on the test data. These were the highest rank-1

accuracy and the lowest cross-entropy cost scores among participants. Other methods reported rank-1

accuracy scores from 0.688 to 0.88 and cross-entropy scores from 0.877 to 1.448 [Marconi et al., 2018].

A confusion matrix with the classification results is reported in Fig. B.2. In addition to the high

rank-1 accuracy and low cross-entropy cost scores, the CCB-ID model performed well according to

the secondary crown-scale performance metrics. These secondary metrics calculated a mean accuracy

score of 0.979, mean specificity score of 0.985, mean precision score of 0.614, and mean recall score

of 0.713 across all species. The per-species secondary metrics are summarized in Fig. 3.4. These
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Figure 3.4: Per-species secondary model performance metrics applied to test data, calculated using
the binary confusion matrix reported in Fig. B.2. Metrics weighted by the true negative rate (i.e.,
accuracy and specificity) were high for all species since the models correctly predicted the most
common species, Pinus palustris. However, metrics weighted by the true positive rate (i.e., precision
and recall) were much more variable since there were fewer than six observed crowns for seven of the
nine species (P. palustris and Quercus laevis had 84 and 23 crowns, respectively). This penalized
misclassifications of rare species. These metrics were also recalculated using the continuous per-crown
prediction probabilities, which can be found in Fig. B.1

results were calculated using the categorical classification predictions (i.e., after assigning ones to

the species with the highest predicted probability, and zeros to all other species). Probability-based

classification metrics are reported in Fig. B.1.

During model training, outlier removal excluded 797 samples from analysis. A total of 264 of the

797 samples (33%) removed from analysis were from P. palustris, while the remaining 533 samples

(67%) were from non-P. palustris species. Outlier removal disproportionately excluded samples from

uncommon species; 45% of samples from L. styraciflua, the rarest species, were removed. After

outlier removal, the first principal component contained 78% of the explained variance. However,

this component did not drive model performance; it ranked 7th and 11th in terms of ranked feature

importance scores for the gradient boosting and random forest classifiers. Model accuracy scores,
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Figure 3.5: Mean (solid) and standard deviation (shaded) of (A) model accuracy and (B) log loss
scores as a function of increasing spectral variance for each classification method. Scores were
calculated on holdout data from the training set, not the competition test data. Using all spectral
variance (i.e., all principal components) as model features decreased model performance. Both
random forest classifiers (RFC) and gradient boosting classifiers (GBC) were used.

calculated on a sample basis (i.e., not by crown) using the 25% training data holdout, were 0.933

for gradient boosting and 0.956 for random forest. Log loss scores, calculated prior to probability

calibration, were 0.19 for gradient boosting, and 0.47 for random forest. After probability calibration,

log loss scores were 0.24 for gradient boosting and 0.16 for random forest. The per-class secondary

metrics reported a mean specificity score of 0.987, mean precision score of 0.908, and mean recall

score of 0.907 across all species.

The post-submission analyses found PCA transformations improved model accuracy. Models fit

using the original methods calculated mean bootstrapped accuracy scores of 0.944 (s.d.± 0.009) for

gradient boosting and 0.955 (s.d.± 0.008) for random forest. Models fit using the spectrally-subset

reflectance data as features calculated mean accuracy scores of 0.883 (s.d. ± 0.012) for gradient

boosting and 0.877 (s.d ± 0.011) for random forest, and mean log loss scores of 0.46 (s.d. ± 0.03)

for gradient boosting and 0.48 (s.d.± 0.03) for random forest. Mean model accuracies declined and

mean log loss scores increased after including more than 20 components as features for the models fit

using varying numbers of principal components (Fig. 3.5).
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3.5 Discussion

CCB-ID accurately classified tree species using NEON imaging spectroscopy data, reporting the

highest rank-1 accuracy score and lowest cross-entropy cost score among ECOSDE participants. These

scores compare favorably to other imaging spectroscopy-based species classification efforts, as reviewed

by [Fassnacht et al., 2016]. These crown-scale test results highlight the technical and conceptual

potential of species mapping methods that approximate botanical and taxonomic approaches to

classification. However, this method failed to overcome several well-known species mapping challenges,

like precisely identifying some rare species. Below I discuss some key takeaways and suggest

opportunities to improve future imaging spectroscopy-based species classification approaches.

3.5.1 Class Imbalance in Ecological Contexts

The high per-species accuracy scores indicate a high proportion of correctly classified crowns in the

test data. However, accuracy can be a misleading metric in imbalanced contexts. Since seven of the

nine classes had six or fewer crowns in the test data (out of 126 total test crowns), classification

metrics weighted by the true negative rate (i.e., accuracy and specificity) were expected to be high if

the majority class were correctly predicted. Metrics weighted instead by the true positive rate (i.e.,

precision and recall) showed much higher variation across rare species, as a single misclassification

greatly alters these metrics when there are few observed crowns (Fig. 3.4). Due to the small sample

size, it is difficult to assess if these patterns portend problems at larger scales. For example, there

were two observed Acer rubrum crowns in the test data, yet only one was correctly predicted. Was

the misclassified crown an anomaly? Or will this low precision persist across the landscape, predicting

A. rubrum occurrences at half its actual frequency? The latter seems unlikely, in this case; the low

cross-entropy and log loss scores suggest misclassified crowns were appropriately uncertain when

assigning the wrong label (B.1). However, since airborne species mapping is employed to address

large-scale ecological patterns where model precision is key (e.g., in biogeography, macroecology, and

biogeochemistry), we should be assessing classification performance on more than one or two crowns

per species.

Comparing model performance between and within taxonomic groups revealed notable patterns.

Quercus and Pinus individuals (i.e., Oaks and Pines) accounted for 120 of the 126 test crowns and

there was high fidelity between them. Only one Quercus crown was misclassified as Pinus, and two
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Pinus crowns were misclassified as Quercus. From a botanical perspective, this makes sense; these

genera exhibit very different growth forms (i.e., different canopy structures and foliar traits), and

should thus be easy to distinguish in reflectance data. However, within-genus model performance

varied between Quercus and Pinus. Quercus crowns were never misclassified as other Quercus species,

yet there were several within-Pinus misclassifications.

This may be because Quercus species tightly conserve their canopy structures and foliar traits

[Cavender-Bares et al., 2016], while Pinus species may express trait plasticity. Pinus species maintain

similar growth forms (i.e., their needles grow in whorls bunched through the canopy), perhaps

limiting opportunities to distinguish species-specific structural variation. Furthermore, they are

distributed across the varying climates of the southern, eastern, and central United States, suggesting

some degree of niche plasticity. If this plasticity is expressed in each species’ functional traits, then

convergence among species may then preclude trait-based classification efforts. Quantifying the

extent to which foliar traits are conserved within and between species and genera will be essential for

assessing the potential for imaging spectroscopy to map community composition across large extents

[Violle et al., 2012, Siefert et al., 2015].

3.5.2 Trait-based Interpretations of Imaging Spectroscopy Data

The post-submission analyses revealed several notable patterns. First, PCA transformation signifi-

cantly increased mean model accuracy scores by 7-8% compared to the spectrally-subset reflectance

data. I suspect this is because the models could focus on the spectral variation driven by biologically

meaningful components instead of searching for that signal in the continuous reflectance spectrum,

where the majority of variation is driven by abiotic factors. The low feature importance scores of

the first principal component support this interpretation. The first component in reflectance data

is typically driven by brightness —not an indicator of interspecific variation—and contained 78%

of the explained reflectance variance, but ranked low in feature importance for both models. This

preprocessing transformation approximates the “rotation forest” approach developed by [Rodŕıguez

et al., 2006], who found PCA preprocessing improved tree-based ensemble models in virtually every

context it was applied. They suggested retaining all components to maintain the full dimensionality of

the input data. However, the component-based sensitivity analysis showed model accuracy decreased

when including more than the first 20 components (Fig. 3.5). Since there are many components that
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include non-biological information, like brightness or sensor noise, there results suggest that using all

components overfits to spurious signals in this feature-rich dataset. Performing feature selection on

transformed data will likely help to overcome this.

Feature selection has been applied to reflectance data to find the spectral features that track

functional trait variation [Feilhauer et al., 2015], which should help identify the trait-based principal

components that discriminate between species. Furthermore, other transformation methods may be

more appropriate than PCA; principal components serve only as proxies for functional traits in this

context. I expect transforming reflectance data directly into trait features, further extending the

analogy of a taxonomic approach to classification, would improve species mapping accuracy, improve

model interpretability, and further define the mechanistic and biophysical basis for species mapping

with imaging spectroscopy.

3.5.3 Overcompensating for Rarity

Despite the successes of CCB-ID, there were several missteps in model design and implementation.

For example, outlier removal and resampling were employed to reduce class imbalance problems but

may instead have exacerbated them. First, the PCA-based outlier removal excluded samples based

on deviation from the mean of each component. However, since the transformations were calculated

using imbalanced data, the majority of the variance was driven by variation in the most common

species. This means outlier removal excluded samples that deviated too far from the mean-centered

variance weighted by P. palustris. Indeed, 533 of the 797 samples excluded from analysis (67%)

were from non-P. palustris species (which comprised only 37% of the full dataset). This removed

up to 45% of samples from the rarest species (L. styraciflua), reducing the spectral variance these

models should be trained to identify. This suggests outlier removal should either be skipped or

implemented using other methods (e.g., using spectral mixture analysis to identify samples with high

soil or non-photosynthetic vegetation fractions) to reduce imbalance for rare species.

Data resampling further exacerbated class imbalance. By setting the resampling threshold an

order of magnitude above the least sampled class, the rarest species were oversampled nearly 10-fold in

model training. This oversampling inflated per-class model performance metrics by double-counting

(or more) correctly classified samples for oversampled species. These metrics were further inflated as

a result of how the train/test data were split. The split was performed after resampling, meaning the
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train/test data for oversampled species were likely not independent. This invalidated their use as true

test data, overestimating performance during model training. This was bad practice. Undersampling

the common species was also detrimental. Excluding samples from common species meant the models

were exposed to less intraspecific spectral variation during training. This is a key source of variation

the models should recognize. Excluding this spectral variation made it more difficult for the models

to distinguish inter and intraspecific variation. Assigning sample weights (e.g., proportional to the

number of samples per class) and using actually independent holdout data could overcome these

issues.

3.6 Conclusion

Airborne imaging spectrometers can map tree species at crown scales across large areas, and these

data are now publicly available through NEON’s open data platform. However, there is currently no

canonical imaging spectroscopy-based species mapping approach, limiting opportunities to explore

key patterns in biogeography. This taxonomic learning approach was developed to address this

gap and to further the conversation on best practices for species mapping. CCB-ID performed well

within the scope of the ECODSE competition, reporting the highest rank-1 accuracy and lowest

cross-entropy scores among participants. Yet further testing is necessary to identify whether this

method can scale across multiple sites or to other regions, including high diversity forests. I hope

CCB-ID will be used by others to improve future species mapping efforts in pursuit of answers to

biogeography’s great mysteries of where the species are, and why they are there.
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4.1 Abstract

Mosquitoes are expected to shift their geographic distributions with rising temperatures, urbanization,

agricultural expansion and human population growth. As ectotherms, temperature responses are mech-

anistically understood for many mosquito arbovirus vectors. But the responses to other environmental

changes are not. How do these covarying patterns of change interact to determine the biogeography of

these vectors? Here, we quantified how three distinct dimensions of the vector niche—climate, habitat, and

resource constraints—interact to determine the distributions of two mosquito species, Aedes aegypti and Ae.

albopictus, which transmit dengue, chikungunya, Zika, and viruses across Latin America and the Caribbean.

When considered independently from other drivers, resource constraints (i.e., access to blood meals) best

predicted the realized niche for Ae. aegypti, while temperature constraints best predicted niche patterns

for Ae. albopictus. Both vectors occurred disproportionately in areas with high mean and low variance in

temperature throughout the year, revealing strong niche preferences for high temperatures and thermal

stability. Ae. aegypti was more frequently observed at warmer temperatures (mean = 31.0◦ C) than Ae.

albopictus (mean = 29.1◦ C), consistent with mechanistic predictions of vector-specific thermal optima. Ae.

aegypti occurred in areas of higher population density (mean = 632.2 people km−2) than Ae. albopictus (mean

= 363.6 people km−2), which tended to occur in areas of higher livestock density (mean = 4.4 animals km−2).

Resource use patterns were consistent across Mesoamerica, South America, and the Caribbean for both

vectors, while climate and habitat patterns were region-specific, suggesting Aedes distribution patterns may

be constrained by access to blood meals.

4.2 Introduction

The global burden of dengue is increasing worldwide, with the number of symptomatic infections doubling

every decade since 1990 [Stanaway et al., 2016]. The geography of transmission is expected to shift under

climate change [Bhatt et al., 2013, Campbell et al., 2015], increasing in temperate areas and decreasing in

areas that will become too hot to support sustained viral transmission [Mordecai et al., 2019, Ryan et al.,

2019]. These shifts may be especially pronounced in Latin America and the Caribbean [Shepard et al.,

2011, Tapia-Conyer et al., 2012], which have seen rising temperatures, shifting precipitation regimes, and rapid

forest loss, each of which promote dengue transmission [Locatelli et al., 2011, Marengo et al., 2011, Collins

et al., 2013, Nobre et al., 2016]. Reduced vector control practices after the 1960s [Gubler, 2002, Gómez-

Dantés and Willoquet, 2009] and human-assisted migration of mosquitoes also drove reintroductions and

new invasions across the region [Knudsen, 1995, Rossi et al., 1999, Tatem et al., 2006, Ortega-Morales and

Rodŕıguez, 2016]. Recent events indicate short-term increases in transmission as well: Perú announced a
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dengue emergency for three Amazonian departments in February 2020 [Ministerio de Salud, Perú, 2020, U.S.

Embassy Lima, 2020] and Brazil reported nearly 1.5 million dengue cases in the 2019 dry season alone—more

than all cases reported in 2017 and 2018 combined [Brazil, 2019, Pan American Health Organization / World

Health Organization, 2020].

The globally invasive mosquito species Aedes aegypti and Ae. albopictus are the primary vectors of

dengue, as well as Zika and chikungunya viruses, which also caused explosive epidemics in Latin America

and the Caribbean in 2016-2017 and 2014-2015, respectively. With no vaccines widely available for these

viruses (collectively called arthropod-borne viruses or “arboviruses”), forecasting and intervention are key

mitigation strategies [Tapia-Conyer et al., 2012, Altizer et al., 2013, Castro et al., 2019]. As transmission is

driven by species interactions between humans and mosquitoes, and moderated by environmental conditions

[Hopp and Foley, 2001, Paaijmans et al., 2013, Mordecai et al., 2019], transmission forecasts depend to a

large degree on how well we can characterize human-vector-environment interactions.

There are two main approaches to modeling how humans and the environment determine mosquito

biogeography [Tjaden et al., 2018]. Mechanistic models explicitly define the physiological and ecological

processes driving vector life cycles and infection patterns [Costa et al., 2010, Carrington et al., 2013, Mordecai

et al., 2013]. Quantifying the temperature dependence of these processes has been a central focus for

ecological epidemiologists, with both lab experiments and mathematical models predicting that mosquito life

history and interaction traits vary directly and nonlinearly with temperature [Brown et al., 2004, Mordecai

et al., 2017, Shocket et al., 2018]. However, it is unclear whether these thermal responses, alone or in

combination with other drivers, predict vector biogeography with the same precision [Tjaden et al., 2018].

Alternatively, species distribution models (SDMs) characterize biogeographic patterns of where species are

present, using occurrence records and environmental data to quantify a species’ realized niche (the conditions

of occupied habitat) and to predict its fundamental niche (potentially suitable habitat), though these methods

eschew mechanism for predictive power [Grinnell, 1917, Soberon and Townsend Peterson, 2005, Wiens et al.,

2009]. Global SDMs for Ae. aegypti and Ae. albopictus, and for the arboviruses they transmit, report that

temperature and precipitation are the predominant drivers of vector biogeography and are the best predictors

of epidemic potential [Brady et al., 2014, Liu-Helmersson et al., 2014, Kraemer et al., 2015a], corroborating

mechanistic models. Recent studies have merged these approaches by applying lab-derived thermal responses

to climate-driven niche maps to forecast spatial transmission patterns [Tjaden et al., 2017, Mweya et al.,

2016].

Despite this consistency between mechanistic and statistical methods, it’s not yet clear that climate alone

sufficiently characterizes the mosquito vector niche. Spatially-explicit cross-validation studies suggest it may

not [Liu et al., 2020]. Multiple climate-driven SDMs for Ae. aegypti and Ae. albopictus, trained on data from
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Asia, Europe and North America, have failed to generalize to Latin America where both vectors are invasive,

suggesting that vector-climate relationships are not consistent across continents [Medley, 2010, Carlson

et al., 2016, Pech-May et al., 2016]. These results have been interpreted as evidence of niche evolution;

that each vector is adapting to new climates as it invades. But niche evolution is a complex process, and

climate constraints only characterize one dimension of the vector niche [Wiens et al., 2010, Hortal et al.,

2015, Diniz-Filho and Bini, 2019]. Moreover, no direct evidence exists to support the idea that vector thermal

constraints are evolving. Is it instead possible that other conserved ecological mechanisms, like habitat or

resource constraints, better explain spatial invasion patterns?

Aedes habitat constraints are typically characterized by land cover, with Ae. aegypti often found in

vegetated urban areas [Troyo et al., 2009, Jansen and Beebe, 2010] and Ae. albopictus found in rural and

agricultural areas [Knudsen, 1995, Tsuda et al., 2006], though the urban/rural dichotomy does not always

hold [Li et al., 2014]. In global models, the importance of climate overshadows land cover when solely

characterized by simple remote sensing metrics [Kraemer et al., 2015a, Carlson et al., 2016]. Yet land cover

better describes vector distributions when represented by descriptive metrics like vegetation phenology, tree

cover, or building density, which mechanistically map to access to sugar feeding resources, natural breeding

sites, or urban breeding sites, respectively [Martinez-Ibarra et al., 1997, Peterson et al., 2005, Vanwambeke

et al., 2007, Troyo et al., 2009, Landau and van Leeuwen, 2012, Li et al., 2014]. These hematophagous

vectors are also reproductively constrained by access to blood meals [Padmanabha et al., 2012]. Humans are

the primary blood meal source for both vectors, but Ae. albopictus is less specific and will often feed on

domesticated mammals and on wildlife [Gratz, 2004, Delatte et al., 2008]. Despite the outsized importance

of resource constraints in other ecological contexts, they are rarely quantified when mapping Aedes niche use.

We hypothesize that spatial invasion patterns that are unexplained by climatic constraints may instead be

explained by habitat or resource constraints. We tested this by quantifying niche preferences and evaluating

evidence for niche conservation in Ae. aegypti and Ae. albopictus across Latin America and the Caribbean,

where both vectors are invasive. We asked:

1. To what degree do climate, habitat, and resource constraints predict spatial patterns of niche use for

Ae. aegypti and Ae. albopictus at continental scales?

2. How do statistically-derived niche preferences compare to direct lab and field observations?

3. Are climate, habitat, and resource preferences conserved across Latin America and the Caribbean for

each vector?

We trained presence-only SDMs using 11 mechanistically-based covariates to quantify the importance of

these niche dimensions in characterizing each vector’s realized niche. We compared our results to lab-derived
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thermal responses and to two mosquito abundance field surveys to corroborate experimental and in situ

patterns. To evaluate evidence of niche evolution, we tested whether models trained in one region predicted

spatial distributions in other regions (i.e., whether niche preferences are conserved). We evaluated model

performance using area under the receiver operator curve (AUC), a metric of separability, which calculates

the probability that model predictions distinguish between suitable habitat and the background (i.e., a bias-

adjusted random geographic sample). We adjusted for sampling bias by assuming sampling effort was biased

towards urban areas by applying the target group background selection method, using a global nightlights

dataset and non-Aedes occurrence records from the Culicidae family [Phillips et al., 2009, Merow et al., 2013].

This is distinct from studies that solely restrict background sample selection to vector-specific envelopes of

temperature suitability [Brady et al., 2014, Kraemer et al., 2015a]. We exclusively used satellite-derived

covariates, which provide spatially continuous and regularly-spaced measurements instead of interpolated

weather station data, which are sparse across Latin America and the Caribbean [Fick and Hijmans, 2017].

4.3 Methods

Species distribution modeling is based on the Grinellean niche concept: the environmental conditions that

allow individuals of a species to survive and reproduce will constrain the distributions of those species

[Grinnell, 1917, Wiens et al., 2009]. The inputs to these models are spatially explicit species occurrence

records and gridded environmental covariates, which we gathered and derived from publicly-accessible datasets

(Fig. 4.1). We also included a bias assessment in our models, described in-depth below, as Aedes records are

often collected in populated areas in efforts to map human disease risk. We sampled background covariates

in proportion to the sampling effort of the occurrence data (i.e., we assessed suitability relative to the

environmental conditions where sampling was most likely to occur). All spatial data were projected to

a Molleweide global equal area, 1 km2 grid prior to analysis (EPSG:54009), all map figures made in web

mercator (EPSG:3857), all scripts can be found on GitHub (https://github.com/earth-chris/aedes-americas),

all species distribution models were trained using the Maxent software [Steven J. Phillips, Miroslav Dud́ık,

Robert E. Schapire, 2017], and all spatial analysis was performed in Python or on Google Earth Engine

[Gorelick et al., 2017].

4.3.1 Occurrence Records and Environmental Covariate Data

We analyzed 6,317 Aedes aegypti occurrence records and 3,629 Ae. albopictus records from two global

datasets: the Global Biodiversity Information Facility (GBIF; https://gbif.org) and from a global synthesis

by [Kraemer et al., 2015b]. All data were filtered to contain only records in Latin America and the Caribbean
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Figure 4.1: Species occurrence records and environmental covariates show continental-scale niche use
patterns that determine Aedes distributions. The human population density map (black, top) was
log10 transformed from units of people ha−1. The livestock density map (black, bottom) is in units of
animals km−2. Temperature patterns (red) are reported in ◦C. Leaf area index patterns (green, top)
are reported in units of m2m−2, while tree cover (green, bottom) is reported in %. Precipitation
patterns (blue) are reported in units of mmmo−1.

from 2000 to 2017. Raw Ae. aegypti data from GBIF contained 5,648 records [GBIF, 2018a], and the raw Ae.

albopictus data contained 3,452 records [GBIF, 2018b]. All GBIF data were cleaned to include only published

records, to exclude points with > 10 km reported spatial uncertainty, and to include only points recorded by

human observation. The raw Ae. aegypti data from Kraemer et al. contained 1,067 records, and the raw Ae.

albopictus data contained 159 records, which were quality checked prior to publication [Kraemer et al., 2015b].

The GBIF and Kraemer et al. data were cleaned to remove duplicate records, and reprojected to the global
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equal area grid. To reduce spatial autocorrelation effects, we created a 5x5 km grid and only included one

randomly selected record from grid cells with more than one record [Segurado et al., 2006, Hawkins, 2012].

To assess the relative importance of climate, habitat and resource constraints on niche use, we developed

satellite-derived metrics that capture the spatial and temporal variation in temperature, precipitation, land

cover and population densities. The spatial and temporal scales over which these patterns vary are quite

distinct. While land cover can vary greatly over small spatial scales, it typically varies only minimally

within a year in undisturbed landscapes. If land cover does change within a year, it is often the result of a

transformative process (e.g., the conversion of forest to pasture). In contrast, temperature and precipitation

can vary greatly on daily and monthly time scales, but at any time the spatial turnover in these patterns can

be small relative to turnover in land cover. The derived covariates attempted to represent these spatial and

temporal dynamics across scales for these niche constraints.

For temperature and precipitation, we derived mean, variance, and skewness statistics on a per-grid

cell basis using all daily MODIS land surface temperature (LST; ◦ C) and hourly TRMM precipitation

measurements (PCP; mmmo−1) from 2002-2017 [Justice et al., 1998, Huffman et al., 2007, Hou et al., 2013].

We calculated mean temperature and precipitation metrics to identify preferences for average conditions over

a year, variance metrics to identify preference for static or dynamic climatic conditions, and skewness to

calculate preference for anomalously hot/cold or wet/dry conditions [Huffman et al., 2007, Hou et al., 2013].

We included three land cover metrics to characterize habitat constraints: tree cover (TC; %) and the mean

and variance of leaf area index (LAI; m2m−2) from 2002-2017 [Justice et al., 1998, Hansen et al., 2013]. The

LAI covariates were selected to describe vegetation growth and phenology, as well as access to sugar feeding

resources [Martinez-Ibarra et al., 1997, Chen and Kearney, 2015]. Tree cover was included to distinguish

forests from agriculture and because each vector uses trees in urban and agricultural landscapes as habitat

[Troyo et al., 2009, Landau and van Leeuwen, 2012]. To characterize resource constraints (i.e., available blood

meal), we analyzed two population density covariates, human population density (POP; people km−2) and

livestock density (LIV; animals km−2) from WorldPop and the Gridded Livestock of the World database

[Tatem, 2017, Gilbert et al., 2018]. Human population density was log10 transformed to increase normality

prior to analysis.

4.3.2 Species Distribution Modeling

To address our first research question, we evaluated niche preferences using the Maxent species distribution

modeling software [Phillips et al., 2006, Steven J. Phillips, Miroslav Dud́ık, Robert E. Schapire, 2017],

which uses logistic regression to calculate habitat suitability based on the conditional density of features at

occurrence points and the unconditional density of features across the study area [Elith et al., 2011]. Prior to
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analysis, we used the target group selection method [Phillips et al., 2009, Merow et al., 2013] to generate

a sampling bias adjustment using non-Aedes occurrence data from the Culicidae family and urbanization

data from nighttime lights [Mills et al., 2013]. We used these data to train a Maxent model, then used the

cumulative output, which indicates sampling frequency in human populations, as our sampling bias for all

other Maxent analyses. We therefore assumed that neither the mosquito vectors nor the vector sampling

efforts were uniformly distributed, but biased towards urban centers, so suitability was calculated relative to

a statistically-derived null distribution of areas where people live.

Maxent calculates relative species occurrence probabilities by comparing the statistical distributions of

environmental covariates at occurrence sites to a similar covariate distribution across potentially accessible

habitats (i.e., the background) per Eqn. 4.1:

Pr(y = 1|z) =
f1(z) · Pr(y = 1)

f(z)
(4.1)

Where y represents a species, y = 1 are locations where that species was observed, z is a vector of

environmental covariates, f(z) is a probability distribution of non-linear feature transformations derived from

the vector of covariates across the background, f1(z) is a probability distribution of features derived from the

covariates at species occurrence locations, and Pr(y = 1|z) is the probability that a species occurs at a point

on the landscape as conditioned by the environment. The sampling bias adjustment modified the locations

from which the distribution f(z) was drawn.

To identify which environmental covariates independently best predicted Aedes niche use, we ran four

sets of Maxent models, each using just the covariates from each potential niche axis (i.e., temperature,

precipitation, resource availability, and habitat). For population density we set z = [log10(POP ), LIV ],

for temperature we set z = [LSTmean, LSTvar, LSTskew], for land cover we set z = [LAImean, LAIvar, TC],

and for precipitation we set z = [PCPmean, PCPvar, PCPskew]. We evaluated model performance using the

area under the receiver operator curve (AUC), a metric of separability, which calculates the probability

that model predictions distinguish between suitable habitat and a semi-random geographic sample (i.e., the

background). We assessed model performance using 4-fold cross validation and reported a modified AUC

calculation (described in more detail below).

To assess the relative importance of each environmental covariate, we ran Maxent models using all covari-

ates, setting z = [log10(POP ), LIV, LSTmean, LSTvar, LSTskew, LAImean, LAIvar, TC, PCPmean, PCPvar,

PCPskew], and reported permutation importance scores. During model fitting, Maxent calculates how model

performance changes as feature coefficients change [Phillips and Dud́ık, 2008]. Permutation importance scores

are calculated by randomly altering the values of a single covariate and recalculating model performance

(here, AUC). These values are rescaled to a percentage based on how model performance changed for each
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covariate permutation. The mean cross-validation permutation scores are reported in Table B.2.

Maxent models were run with the following parameters. For feature selection we ran models with only

‘hinge’ features enabled, which construct smooth, nonlinear response curves akin to a generalized additive

model [Hastie and Tibshirani, 2004, Elith et al., 2011]. This was based on the assumption that Aedes vectors

would respond in a continuous, nonlinear fashion to climate, habitat and resource patterns, akin to other

temperature-dependent models that assume unimodal response functions [Mordecai et al., 2017]. To reduce

model overfitting and to reduce the effects of collinearity in our environmental covariates, we increased the

default β regularization parameter to 1.5, which penalizes complex models and shrinks model coefficients

during training [Merow et al., 2013]. We selected this value by minimizing the difference between training

and testing AUC scores in cross-validation using models trained with all covariates. For background selection,

we preferentially sampled 10,000 random points using the sampling bias map described above. For the output

format, we report Maxent’s cumulative suitability metric, which is a relative occurrence rate rescaled between

0 and 100. This output can be interpreted as an omission rate; setting a threshold at a value of 10 to predict

presence/absence will omit approximately 10% of presence records [Phillips and Dud́ık, 2008, Merow et al.,

2013].

In our results we report a modified AUC score. AUC can be interpreted as the probability that a randomly

chosen presence sample is ranked above a randomly chosen background sample. These probabilities are

typically assessed using all test samples for presence and background points. However, when the number of

background samples is greater than the number of presence samples, AUC values may appear artificially

high by predicting low suitability across a large number of background samples without actually calculating

appropriately high suitability scores in the small number of locations where a species is present. This is

akin to a zero-inflation effect. We reduced this inflation effect by randomly selecting the same number of

background samples as presence test samples (i.e., balancing the test dataset) before calculating AUC scores.

This process was bootstrapped 5 times for each model to get an unbiased estimate of the adjusted AUC

value, and we reported the bootstrapped mean.

4.3.3 Field Data Collection

To address our second research question comparing model results to field observations, we collected mosquito

abundance data using an array of trapping methods across two regions, which included 38 field sites in

Costa Rica and 96 field sites in Perú (Fig. 4.2; Table B.3). Both regions were sampled during the wet

season—July 2017 in Costa Rica and November 2018 in Perú—when Aedes vectors and local mosquito

surveillance programs were both active. The Costa Rica sites were located in the tropical southeast of the

country near the border with Panamá, then considered a southern frontier for Ae. albopictus, which hadn’t
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Figure 4.2: Field plot locations in Perú and Costa Rica. 134 field sites were visited, 38 in Costa
Rica (top) and 96 in Perú, where four methods of mosquito trapping were used. These included
BG-Sentinel traps, CDC light traps, Gravid Aedes traps (GAT), and aspiration. All sites were visited
twice, with the exception of four sites in Costa Rica, which were visited once.

yet been formally reported in the region despite a recent increase in dengue cases [Gutiérrez, 2015]. The Perú

sites were all located in the southeastern department of Madre de Dios. These included a set of sites near the

border of Brazil and Bolivia, where there is concern that Ae. albopictus could migrate into Perú with traffic

along the Interoceanic Highway. Ae. albopictus was the predominant vector of interest in the Costa Rica

sites, with just three Ae. aegypti individuals identified there. Ae. aegypti was the only vector of interest

identified in the Perú sites.

The site sampling scheme was designed to understand how Aedes habitat preferences and abundance

patterns change along a land cover gradient. To identify sampling locations along this gradient, we created a

four-class land cover map using k-means clustering. k-means is an unsupervised classification algorithm that

iteratively seeds k cluster centroids in multivariate data and groups points according to the closest centroid,

searching for centroids that minimize within-cluster variance. Generated using land cover covariates, these

four classes roughly corresponded to forest, forest edge, agriculture and urban classes. Though logistical



CHAPTER 4. NICHE USE AND CONSERVATION IN AEDES ARBOVIRUS VECTORS 57

challenges limited the number of forest and forest edge sites we could sample, it was important to trap in these

areas. There is still active debate over the relationship between deforestation and mosquito-borne disease

transmission [Norris, 2004, Tucker Lima et al., 2017], and few studies sample mosquito vector populations in

forests prior to deforestation. Likewise, few SDMs include presence/absence test data in forests, making it

difficult to evaluate the full extent of potential niche shifts forecast under global change.

Within the four land cover classes, we sampled opportunistically on properties where we could gather

landowner approval, and landowners were notified if a vector was identified on their property. In urban

areas, this included high and low density populations, including the rural mining town of Mazuko, Perú, and

mid-elevation San Vito, Costa Rica, the capital of the Coto Brus district. Puerto Maldonado, Perú, the

capital of Madre de Dios, was the most populous site sampled. The agriculture sites included cattle pastures

as well as coffee, pineapple, banana and palm plantations. The forest and forest edge classes were grouped

together, as trap placement was always < 100 m from the forest edge, and because it was difficult to access

many forested regions. These sites were located inside forest patches adjacent to agricultural areas, urban

areas, and water bodies. In total, we sampled 36 forest/forest edge sites, 46 agriculture sites and 52 urban

sites.

We sampled mosquito populations using four trapping methods: BG-Sentinel traps (baited with lures),

CDC light traps (baited with CO2 and octanol), Gravid Aedes traps (GATs), and manual aspiration. Traps

were placed in the evening and picked up the following morning, remaining on site for approximately 12-16

hour periods. Aspiration was performed in the morning at the Costa Rica sites, and both in the evening and

in the morning at the Perú sites. All sites were visited twice, with the exception of four Costa Rica sites that

were visited once (PV-01, PV-02, PV-04, PV-05). Following trap retrieval and aspiration, all individuals were

transferred to the lab for identification by trained personnel (MEH in Costa Rica, MSG and DN in Perú).

Only high confidence identifications were flagged as positive vector observations; mature individuals and

larval samples labeled as Aedes spp. were not included in the vector counts reported. In total, we collected

6,965 individual mosquitoes, 199 of which were identified as Ae. aegypti or Ae. albopictus.

4.3.4 Spatial Cross-Validation

To address our third research question, we evaluated evidence for niche conservation in each mosquito vector.

In other Aedes modeling efforts, this has been done by evaluating model transferability: training SDMs in

one region and evaluating how well model predictions transfer to geographically independent regions [Yates

et al., 2018]. Models that fail to predict occurrence patterns outside the training region have been interpreted

to indicate that these vectors are adapting to new climates; that niche shifts are underway, perhaps driven by

hidden niche plasticity [Medley, 2010, Carlson et al., 2016]. This would fundamentally hinder our ability to
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Figure 4.3: Methods summary for estimating niche conservation. A) First we used the species
distribution models trained on each set of covariates (per Section 4.3.2 ) to calculate baseline model
performance using all occurrence data. B) Then we iteratively trained models using just occurrence
records from one of three regions— Mesoamerica, the Caribbean or South America—and tested
performance on the remaining two regions. C) Similarity between baseline results and test results
indicates that models generalize across regions, providing evidence of niche conservation.

forecast future distributions. However, a few key questions need to be addressed before the results of a model

transferability analysis can be interpreted as evidence for or against niche evolution [Liu et al., 2020]. These

include questions of spatial scale (do the occurrence records span the full extent of covariate space the vector

occupies?), sample size (are there enough occurrence records to characterize vector-covariate relationships?)

and representation (how well do the environmental covariates selected describe the different dimensions of

the vector niche?).

We performed a spatial cross-validation analysis to address these questions. For each vector, the occurrence

records were split by geographic region: into records from Mesoamerica, South America and the Caribbean.

To quantify the effects of spatial scale, occurrence records from one region were used as training data and

the remaining occurrence records were used as test data to evaluate each model. This process was repeated

across each region (Fig. 4.3). The data were further subsampled within each region via 5-fold cross-validation

to evaluate regional model variance and the effects of sample size.

To evaluate covariate representation, each model was trained using just covariates from each niche axis

(resource availability, temperature, habitat, and precipitation). These models therefore evaluated how well

a model trained on a subset of occurrence records from one region transfers to the remaining regions on a

per-niche axis basis. We used the models trained across the whole study region as our “baseline” model

performance for each niche axis. We interpret regional models that approximate baseline performance as
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evidence of model transferability and therefore as evidence for niche conservatism. The reciprocal is not

necessarily true, however. Models that deviate from the baseline are not necessarily evidence of niche

evolution; these effects could be driven by issues of spatial scale, sample size or representation.

Figure 4.4: Population density and temperature alone predict Aedes aegypti and Ae. albopictus
occurrence with high precision. These boxplots compare model performance among species distribution
models that were trained on distinct covariate groups. Each set of models was trained only on
covariates related to resource constraints (human population density, livestock density), temperature
constraints (mean, variance and skewness of daily temperatures), habitat constraints (mean and
variance of daily leaf area index, tree cover) or precipitation constraints (mean, variance and skewness
of monthly rainfall). Uncertainty estimates were derived from 4-fold jackknifed cross-validation.

4.4 Results

4.4.1 Climate, Habitat and Resource Constraints

In models that isolated the predictive power of each of the three niche axes alone, we found that resource

constraints, characterized by human population density and livestock density, best predicted the realized
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Figure 4.5: Fundamental niche estimates for each species estimated from the joint model trained on
all 11 covariates show overlapping yet distinct fundamental niches for Ae. aegypti and Ae. albopictus
across Latin America and the Caribbean. Insets show niche extents around population centers in
Mesoamerica, the Caribbean and South America.

niche for Ae. aegypti (AUC mean = 0.806 ± 0.004 SD), while temperature constraints best predicted niche

patterns for Ae. albopictus (AUC mean = 0.847 ± 0.005 SD; Fig. 4.4). For Ae. aegypti, resource constraints

were followed by temperature (AUC mean = 0.767 ± 0.004 SD), land cover (AUC mean = 0.744 ± 0.007 SD),

and precipitation constraints (AUC mean = 0.693 ± 0.007 SD) in discriminatory power. For Ae. albopictus,

temperature constraints were followed by resource (AUC mean = 0.814 ± 0.007 SD), land cover (AUC mean

= 0.790 ± 0.005 SD), and precipitation constraints (AUC mean = 0.684 ± 0.006 SD) in discriminatory power.

To assess the relative importance of each covariate, and to partially disentangle interactions between

drivers, we trained models using all 11 environmental covariates and calculated permutation-based variable
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importance scores (Table B.2) [Phillips and Dud́ık, 2008]. Human population density was the most important

covariate for predicting Ae. aegypti distributions (17.9% of explained permutation variance), and daily

temperature variation was the most important covariate for predicting Ae. albopictus distributions (51.9%

explained permutation variance). While Ae. aegypti models were sensitive to a range of covariates (6

covariates each explained >10% of permutation variance), Ae. albopictus models relied on fewer covariates

(only 3 covariates each explained >10% of permutation variance). These joint models, trained with all 11

covariates, performed better than any of the single niche-axis models reported above (4-fold cross-validation

AUC mean = 0.836 ± 0.006 SD for Ae. aegypti, mean = 0.888 ± 0.005 SD for Ae. albopictus).

The predicted fundamental niche (i.e., potentially suitable habitat) for each vector is widely distributed

throughout Central and South America and the Caribbean, particularly in coastal and lowland regions (Fig.

4.5). While many regions are predicted to be suitable for both vectors (Fig. 4.5, blue), distinct regions of

high suitability for Ae. aegypti (green) or Ae. albopictus (pink) were interspersed at small spatial scales (e.g.,

Havana and Mexico City, Fig. 4.5 insets), as well as segregated across larger geographic regions (e.g., São

Paulo and Rio de Janeiro for Ae. albopictus; the Atlantic dry forest region of Brazil and coastal and lowland

regions of Mesoamerica for Ae. aegypti ; 4.5).

4.4.2 Comparison to Lab and Field Observations

Both vectors occupied a narrow range of mean daily temperatures (Fig. 4.6), with Ae. aegypti occurring in

warmer areas (95th percentile range 24.9-37.2◦C, mean = 31.0◦C) than Ae. albopictus (95th percentile range

22.1-35.9◦C, mean = 29.1 ◦C; signed rank test P < 0.001), though Ae. albopictus mean daily temperature

observations were not significantly different from the background (signed rank test P = 0.430). These mean

observed daily temperature values are slightly higher than the thermal optima for dengue transmission

predicted from a mechanistic model based on laboratory data (29.1◦C for Ae. aegypti, 26.4◦C for Ae.

albopictus), within the confidence intervals of the thermal optima for fecundity (29.6◦C for Ae. aegypti,

29.4◦C for Ae. albopictus, and slightly cooler than the predicted optima for biting rates (33.8◦C for Ae.

aegypti, 31.8◦C for Ae. albopictus (all based on trait thermal performance data summarized in [Mordecai

et al., 2017]). Both vectors were observed in areas with significantly lower variance and higher skewness in

daily temperatures than the background (all signed rank tests P < 0.001), indicating niche preferences for

stable thermal conditions skewed towards warm extremes. All significance tests for stochastic equality were

performed using the two-sided, nonparametric Brunner-Munzel test [Brunner and Munzel, 2000].

Mosquito abundance data from Perú and Costa Rica were grouped as forest/forest edge (36 sites),

agriculture (46 sites) or urban (52 sites) to evaluate niche preferences and abundance patterns along a land

use gradient. Aedes individuals were more abundant in urban sites than in agriculture or forest/forest edge
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Figure 4.6: Ae. aegypti (green) and Ae. albopictus (pink) show distinct temperature, precipitation,
habitat, and resource use profiles. These density distribution plots for 11 environmental covariates
were extracted from occurrence points for each mosquito species and compared to a bias-adjusted
sample of background points across Latin America and the Caribbean (grey). Differences between
occurrence and background points indicate niche preferences for each species.

sites (Table B.3). We identified 156 out of 1,860 mosquitoes collected in urban sites as Ae. aegypti or

Ae. albopictus (8.4% of individuals), occupying 76.5% and 62.9% of urban sites in Costa Rica and Perú,

respectively. In agricultural sites, 34 out of 3,128 mosquitoes collected (1.1% of individuals) were identified

as Ae aegypti or Ae. albopictus. Occupancy rates in agriculture sites varied by country, with 50% of sites

occupied by Ae. albopictus in Costa Rica and 8.8% of sites occupied by Ae aegypti in Perú. We identified

9 out of 1,977 mosquitoes collected in forest/forest edge sites as Ae aegypti or Ae. albopictus (0.5% of

individuals), occupying 27.3% of forest/forest edge sites in Perú but none in Costa Rica. Ae aegypti was the

only vector of interest identified in the Perú sites and Ae. albopictus was the predominant vector of interest
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identified in the Costa Rica sites.

Figure 4.7: Spatial cross-validation analysis shows that models trained on just resource use covari-
ates—human population density and livestock density—generalize across regions for both Ae. aegypti
(green) and Ae. albopictus (pink; top left panel). By contrast, models trained on temperature (top
right), land cover (bottom left), and precipitation (bottom right) on individual regions did not
generalize to the remaining areas.

These field results corroborate the SDM results, where both vectors were observed in areas with dense

human and livestock populations. Ae. aegypti was observed in areas with higher human population densities

(mean = 632.2 people km−2) than Ae. albopictus (mean = 363.6 people km−2), both of which were higher
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than the background (mean = 157.8 people km−2, signed rank tests P < 0.001). Ae. albopictus was found

in areas with higher livestock densities (mean = 4.4 animals km−2) than the background (mean = 2.8

animals km−2, signed rank test P < 0.001). Regarding habitat use, mean leaf area index patterns for Ae.

aegypti were not significantly different from the background (signed rank test P = 0.961), but mean leaf area

index and tree cover patterns for Ae. albopictus were significantly different from the background (signed rank

test P < 0.001). Both vectors appear to avoid dense forests (95th percentile range 0.0-87.4% tree cover for

Ae. aegypti and 0.1-86.1% tree cover for Ae. albopictus).

4.4.3 Niche Conservation

Models trained on just resource constraints within each region (Mesoamerica, the Caribbean, or South

America) generalized well across other regions for both vectors (AUC mean range = 0.752-0.827 for both

vectors in all regions, based on spatially-jackknifed cross-validation), suggesting consistent resource use

patterns across the study area (Fig. 4.7). Temperature preferences generalized well for both vectors when

trained on occurrence records from just Mesoamerica (AUC mean = 0.722 for Ae. aegypti, AUC mean =

0.804 for Ae. albopictus) or just South America (AUC mean = 0.685 for Ae. aegypti, AUC mean = 0.742 for

Ae. albopictus), but did not generalize well for either vector when trained on records from just the Caribbean

(AUC mean = 0.506 for Ae. aegypti, AUC mean = 0.409 for Ae. albopictus). Habitat use patterns did not

generalize well across regions for either vector, though the degree to which these patterns did generalize was

consistent across vectors and across regions (AUC mean range = 0.524-0.657). Precipitation patterns alone

performed no better than random chance in most analyses (AUC mean range = 0.307-0.633).

4.5 Discussion

Mechanistically forecasting shifts in vector-borne disease burden with environmental change will be essential

to manage and mitigate risks to exposed populations. While climatic constraints on Aedes distributions

have been well characterized in the lab and by global spatial models, the mechanisms driving habitat and

resource constraints were previously poorly characterized. Our results suggest that constraining forecasts

based on habitat and resource availability is likely to significantly alter the geography of transmission under

global change. We provide evidence that resource constraints (i.e., available blood meals) strongly predict

Aedes distributions at continental scales, and that vector–resource relationships generalize across regions.

Critically, resource constraints intersect with climate and habitat constraints to determine the two species’

ranges, which are overlapping yet distinct. And while Ae. aegypti and Ae. albopictus are key arbovirus

vectors—associated with urbanization, human-made breeding habitats, and human biting—few previous
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niche modeling studies have explicitly included the density of humans and other blood meal resources as

predictive covariates. With human-altered habitats expanding worldwide, the scope of invasion potential

for these vectors is dramatic; previous work estimated that 80% of Brazil’s population already lives in

vector-suitable habitat [Cardoso-Leite et al., 2014]. And the gap between the fundamental and realized

niches for these vectors is shrinking: the southward movement of Ae. albopictus has expanded to cover Costa

Rica, where it was first officially recorded in northern provinces in the last decade [Calderón Arguedas et al.,

2012, Maŕın Rodŕıguez et al., 2014].

Our approach differs from recent Aedes niche modeling studies in several regards. First, we exclusively

used satellite-derived data as environmental covariates, which are measured continuously along regularly-

spaced grids. This is a fundamentally different data collection strategy from interpolated weather station

data, which are sparsely available in Latin America and the Caribbean [Fick and Hijmans, 2017] yet widely

used in past studies. By aggregating daily satellite measurements over 16 years, we were able to construct

rich, descriptive climate and habitat covariates that track large-scale spatiotemporal variation in each pattern.

Second, our method for quantifying and adjusting for sampling bias significantly differs from other Aedes

niche modeling studies. Since temperature patterns place a physiological limitation on where vectors can

survive, researchers often constrain background sample selection to areas within an envelope of thermal

viability [Brady et al., 2012, Bhatt et al., 2013, Kraemer et al., 2015a]. We instead assumed that, since

vector sampling is a key part of epidemiological surveys, sampling bias was driven less by climatic constraints

than by disease mitigation priorities in populated areas. We therefore quantified bias using urbanization

data, prioritizing background selection from human-dominated areas, as background sampling locations

should be selected with the same biases as the occurrence records [Phillips et al., 2009, Barbet-Massin et al.,

2012, Fourcade et al., 2018]. Even after controlling for preferential sampling near human populations, we still

found that population density and livestock density consistently predicted occurrence patterns, reinforcing

the importance of resource constraints in driving vector distributions.

4.5.1 Mechanisms of Niche Use

Our data-driven results are supported by insights from mechanistic relationships between temperature,

metabolism and transmission derived from lab tests for both vectors [Mordecai et al., 2017, Mordecai et al.,

2019]. First, daily temperature patterns strongly predict niche use for both species, independently predicting

occurrence patterns and driving model sensitivity in multivariate models (Fig. 4.4, Table B.2). Second, the

density distributions of mean daily temperature are unimodal and peak between 29◦C for Ae. albopictus and

31◦C for Ae. aegypti (Fig. 4.6), which is similar to but slightly higher than the mechanistically predicted

optima for dengue transmission of 26◦C and 29◦C, respectively [Mordecai et al., 2017]. Third, Ae. aegypti
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is more frequently observed at warmer temperatures than Ae. albopictus, tracking warmer thermal optima

predicted for biting rates and immature survival rates. However, because these suitable temperatures are

widespread in the tropics, including most of Latin America [Brady et al., 2012, Ryan et al., 2019], mean

temperature alone is not a strong discriminant of Aedes occurrence. By contrast, temperature variance

strongly predicted occurrence patterns, revealing niche preferences for a narrow envelope of thermal conditions

amenable to year-round survival and biting.

Vegetation patterns better predicted the occurrence of Ae. albopictus, traditionally considered a more

rural vector, than they did Ae. aegypti, typically an urban vector (Fig. 4.4). Within areas with suitable

breeding habitats and access to blood meal hosts, vegetation provides more suitable microclimates, adult

resting habitat, and nectar sources for sugar feeding to support metabolism [Marinotti et al., 1990, Martinez-

Ibarra et al., 1997, Chen and Kearney, 2015]. Our vector surveys and other recent work [Troyo et al.,

2009, Calderón-Arguedas et al., 2015] have identified agricultural areas and their adjacent forest elements as

key breeding sites for Ae. albopictus, including coffee, palm, and pineapple plantations in Costa Rica, and for

Ae. aegypti, as well as and areas outside mining camps in Perú. The species distribution models capture

these niche preferences for areas with low to moderate tree cover and mean leaf area index, combined with

high variance in leaf area index, an indicator of vegetation phenology and seasonal agricultural productivity

(Fig. 4.6).

4.5.2 Mechanisms of Niche Conservation

We found strong evidence for niche conservation in resource use patterns via spatially-explicit cross-validation

(Fig. 4.3). Models trained on just human population density and livestock density generalized well across

regions, suggesting that these vectors have consistent resource requirements that explain spatial distribution

patterns better than climate alone. Ae. aegypti occurred in higher population densities (mean = 632

people km−2) than Ae. albopictus (mean = 363 people km−2), both of which were higher than background

values (mean = 158 people km−2). This supports the characterization of Ae. aegypti as an “urban-affiliated”

species (though it may be more precise to characterize them as “human-affiliated”). While Ae. albopictus

also preferred human-dominated landscapes, sensitivity analysis showed that their occurrence records were

better explained by livestock density (Table B.3). This is consistent with their weak but non-discriminating

human biting habits [Gratz, 2004, Paupy et al., 2009, Kamgang et al., 2012]. Supplementing human blood

meals with livestock blood meals is potentially an effective resource use strategy: livestock is the largest pool

of mammal biomass worldwide, and their abundance and geographic footprint is increasing across the region

[Bar-On et al., 2018, Nepstad et al., 2014a, Gilbert et al., 2018], especially as cattle ranching expands in

Brazil under the current presidential administration [Rochedo et al., 2018, Kröger, 2020]. This generalist
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resource use strategy may, in part, explain their invasion dynamics. The spread of Ae. albopictus across

Latin America and the Caribbean, first reported in Texas and Brazil in the 1980s [Moore and Mitchell,

1997, Santos, 2003] —the epicenters of dispersal [Tatem et al., 2006, Wagman et al., 2013, Ortega-Morales

and Rodŕıguez, 2016]—also coincided with the dramatic expansion of pastures across the region [Geist and

Lambin, 2002, Barbier, 2004, Graesser et al., 2015].

While we did not see that niche preferences for temperature, land cover, or precipitation generalized across

regions, which corroborates the results of similar studies [Medley, 2010, Pech-May et al., 2016, Carlson et al.,

2016], we do not interpret this as evidence for niche evolution. Instead, we posit that vector–climate and

vector–habitat relationships are complex and sensitive to a broad range of environmental variation, which are

difficult to fully characterize over small geographic extents using statistically-driven SDMs. This may explain

why temperature-driven models trained in the climatically diverse region of South America generalized well

to Mesoamerica and the Caribbean, but models trained in the Caribbean were not reciprocal. We suggest

that previous evidence for niche evolution may have been driven by this phenomenon and—critically—

due to not accounting for niche conservation in resource use patterns, which did generalize. Resource

use did generalize across the region, with a few occurrence records in the Caribbean predicting thousands

more occurrence records across South America and Mesoamerica. Given these shortfalls, it is important

to develop spatial modeling methods based on generalized, mechanistic vector–environment relationships.

Our statistically-driven approach provided support for well-known vector–climate relationships, identified

new vector–resource mechanisms driving distributions, and highlighted how the generality of vector–habitat

relationships remains uncertain.

4.6 Conclusion

As both Ae. aegypti and Ae. albopictus prefer populated areas in warm climates with low to moderate

vegetation cover, directional shifts under global environmental change are likely to expand the range of

suitable vector habitat [Ryan et al., 2019]. We show here that it is critical to put people on the map in these

global change scenarios [Ellis and Ramankutty, 2008], not only to characterize exposure and vulnerability to

vector-borne disease but to better understand shifts in vector populations themselves and to design effective

mitigation strategies. We also identified that cattle ranching may present an under-recognized risk driving

Ae. albopictus invasion and potential arbovirus transmission, which is also forecast to expand in extent in

the coming years. With dramatic global environmental changes rapidly approaching, public health planners

should be prepared for a potentially devastating expansion of Aedes vectors and their arboviral passengers.
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Conclusion

5.1 New Horizons for Biodiversity Monitoring

It is not necessarily the case that access to more information on the state of biodiversity means that we will

collectively make more informed choices about land use planning in favor of conservation. Dire and repeated

warnings about the consequences of environmental change often appear unheeded, as local or national

priorities—the scales at which all land management decisions are made—supersede global and ecological

priorities [Ehrlich and Mooney, 1983, Daily, 1999, Barnosky et al., 2012, IPBES, 2019]. But information from

monitoring efforts have led to dramatic changes in public policy in the past, like reducing the deforestation

rate by 70% in the Amazon following some of the first satellite-based land cover change analyses [Roughgarden

et al., 1991, Skole and Tucker, 1993, Nepstad et al., 2014b] and increasing reforestation in northwestern China

following severe flooding and encroaching desertification [Fullen and Mitchell, 1994, Ye and Glantz, 2005].

Like independent journalism, biodiversity monitoring systems are a necessary but insufficient institution,

informing public and official discourse on how human activities are changing global ecological processes and

how these changes might be mitigated. Reporting this information clearly, credibly, and transparently will

be especially important in the coming decade, as the greatest threat to conservation and climate change

mitigation is likely to be the widespread transmission of bad-faith disinformation [Iyengar and Massey, 2018].

Satellites and other earth observing sensors are essential monitoring tools, providing repeat, thematically

consistent, and globally available measurements of the earth’s ecosystems. But these abundant measurements

are difficult to translate into metrics that are biological, subject to change, and ecosystem agnostic, limiting

adoption according to current biodiversity monitoring protocols [GEO BON, 2017]. This dissertation reviewed

and addressed some of the technical and conceptual challenges to mapping biodiversity patterns from satellite
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imagery, including addressing scale gaps between satellite and in situ data, using machine learning to simulate

ecological processes, and handling biased or incomplete species data to characterize niche use patterns

and predict spatial distributions. From these analyses emerges a flexible, scalable approach to measuring,

monitoring and forecasting biodiversity change, highlighting opportunities to establish earth observations as

the backbone of novel biodiversity monitoring systems. Three takeaways characterize the lessons learned

from this work.

1. Biodiversity mapping analyses should include multi-scale environmental covariate data when linking

satellite and in situ data. Local biodiversity patterns are often driven by ecological processes that

operate at multiple spatial scales, and intermediate-scale patterns like disturbance regimes are often

poorly represented in models that directly link fine-grained field data with coarse-grained environmental

data. Multi-scale modeling approaches like [Baccini et al., 2017], reviewed in detail in Chapter 2,

illustrate how integrating multiple data sources can translate biodiversity patterns from field to global

scales, while characterizing the relative importance of multiple intersecting drivers of change.

2. Models can precisely translate earth observations measurements from units of energy into units of

biodiversity when model form and covariate transformations are tailored to a specific domain of scale.

Spectral reflectance patterns have different underlying drivers at the leaf, canopy, and community

scales, and Chapter 3 showed how isolating the drivers of canopy reflectance into discrete features

dramatically improved species mapping accuracy, performing better than more complex neural network

models trained with the same data [Marconi et al., 2018].

3. Biomimicry is a powerful approach to selecting and training machine learning algorithms to approximate

and investigate ecological processes. While several processes can be characterized in lab environments,

including temperature-dependent metabolic responses in ectotherms, many other processes like habitat

use are harder to quantify in controlled settings. In Chapter 4 we trained models that mimicked the form

of a known ecological process, nonlinear thermal response functions, to fit similar functions quantifying

mosquito-habitat and mosquito-resource relationships, which revealed previously under-recognized

drivers of the spatial distributions of two globally invasive arbovirus disease vectors.

With more earth observations sensors slated to launch, access to biodiversity data increasing, and the

development of new modeling approaches that integrate these data to produce globally-consistent metrics

of biodiversity change, the promise of global biodiversity monitoring is becoming a reality. And it is not a

moment too soon, with the effects of climate change and biodiversity loss already manifesting. How should we,

collectively, use all of this new biodiversity information? And what purposes could monitoring systems serve

if they were able to provide spatially and taxonomically complete information on the state of biodiversity?
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Figure 5.1: A sign on Mount Chirripó in Costa Rica, home to the only high altitude Páramo grassland
system in Mesoamerica, announcing that climate change has already arrived.

5.2 Acting on Complete Information

If the central challenge addressed in this dissertation was how to translate earth observations measurements

from units of energy into units of biodiversity, the challenge posed by the preceding questions regards how

to translate complete biodiversity information into effective conservation action. To clarify, by discussing

“complete information” I’m encouraging a thought experiment regarding how we should use perfect knowledge

of the state of the biosphere, and not suggesting that earth observations technologies alone will soon deliver

this knowledge. This is certainly a topic too broad to address in much depth here. But as far as I can

discern, there are four main opportunities for biodiversity monitoring systems to mitigate the risks posed by

biodiversity change.

The first opportunity is to systematically quantify the conservation status of species, communities, and

ecosystems to identify what is at risk, then design mitigation strategies. While this may seem a simplistic or
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obvious task—and already the central goal of existing international conservation treaties like the Convention

on Biological Diversity’s Aichi Biodiversity Targets—existing efforts to mitigate risks are still severely data

limited. [Geijzendorffer et al., 2016] found that, while global commitments to halting biodiversity loss have

been signed, requiring extensive monitoring and evaluation to take action, the data available to evaluate

conservation status in accordance with their reporting standards covers less than 25% of stated monitoring

targets in some cases. This problem is especially acute for patterns of genetic diversity and ecosystem

function, while data on trends in species populations are typically the most comprehensive. Incomplete

information is a convenient and often legitimate excuse for inaction; complete information would remove this

barrier.

The next opportunity is to analyze the historical satellite record and, based on the direction and

magnitude of recent changes, design early-warning forecasts to predict upcoming threats to people and to

species populations. As new data sharing policies have enabled open access to a long record of detailed

satellite earth observations (Fig. 2.2), new temporally-explicit methods have been developed to map change

over time using process-based and machine learning models [Cohen et al., 2018, Rao et al., 2020], which

could be used to forecast near-term ecological changes and guide investments in conservation and restoration.

A similar approach is being deployed in China following their recent National Ecosystem Assessment, where

the impacts of a decade of land use change following a $50bn investment in environmental restoration and

urbanization were used to guide a much larger investment in conservation in the coming years based on the

trends that were declining [Ouyang et al., 2016, Bryan et al., 2018].

These kinds of large-scale investments aimed at improving the sustainability of land management practices

have dramatically increased from both private and public sources over the past decade [Hamrick, 2016]. The

monitoring, reporting, and verification standards associated with these investments are often inconsistently

defined and applied, however, leaving many to wonder about the actual returns on these investments [Ferraro

and Pattanayak, 2006, Engel et al., 2008, Sexton et al., 2016]. With so much at stake, there is a lot of pressure

on scientists to quantitatively measure and monitor the changes that occur as a result these investments,

and this emerged as a top priority following the previously mentioned National Ecosystem Assessment [Z.

Ouyang, pers. communication]. The good news is that a global synthesis found the rate of biodiversity loss

decreased directly in response the amount invested in conservation [Waldron et al., 2017]. The bad news is

that the effectiveness of this spending decreased as development pressures increased, and over one third of

the areas protected since 1992 have experienced and increase in development pressure [Jones et al., 2018].

Quantifying biodiversity change simultaneously with the drivers of change—putting people on the map [Ellis

and Ramankutty, 2008]—is another key opportunity for monitoring systems.

The final opportunity, and the most urgent, is to increase public access to biodiversity information.
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Access—the ability to derive benefits from resources [Ribot and Peluso, 2009]—to biodiversity itself is

declining globally, due in part to increasing rates of urbanization [UN Population Division, 2019, Bratman

et al., 2019] as well as the large-scale transfer of land from small private landowners and governments to large

companies, often through land grabs [Peluso and Lund, 2011, Borras and Franco, 2012, Wolford et al., 2013].

Access to biodiversity information, as well as the technical expertise required to analyze and understand it,

is especially limited in poor communities in disadvantaged regions—the communities being excluded from

accessing nature’s benefits—which is also where the negative effects of biodiversity and climate change are

expected to be most severe (Fig. 5.1) [Borras et al., 2012, Turner, 2016, Barbier and Hochard, 2018, IPBES,

2019]. It is imperative that information detailing biodiversity change and the human impacts of these changes,

such as shifting exposure to vector-borne diseases, be made both accessible and useful to the populations

that are most vulnerable.

Complete information on the state of biodiversity alone is insufficient for catalyzing large-scale conser-

vation action, and the degree to which we will collectively use such information to create a more just and

sustainable world will depend on the ability and willingness of monitoring institutions to make biodiversity

information clear, credible, and transparent to the public. And with intergovernmental organizations ceding

the responsibility of monitoring to national and regional bodies, electing instead to focus on capacity building

and filling data gaps [Larigauderie and Mooney, 2010, Scholes et al., 2012], perhaps there is an opportunity

to build an independent global biodiversity monitoring institution based on these principles.
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Glossary

• Biodiversity pattern: recurring and structured variation in the distributions of genes, species, commu-

nities and ecosystems.

• Continuous measurements: Earth observation measurements mapping the full geographical extent of a

region without gaps.

• Data dimensionality : the minimum number of free variables needed to represent data without informa-

tion loss [Camastra, 2003].

• Discrete measurements: Earth observation measurements mapping specific areas that do not cover the

full geographical extent of a region.

• Ecological processes: Activities that result from interactions among organisms and between organisms

and their environment[Martinez, 1996].

• Earth observation sensor : spaceborne or airborne instruments (e.g., a camera or radar) that record the

electromagnetic radiation emitted or reflected by the landscape [Campbell and Wynne, 2011].

• Extent : the range over which a pattern or process occurs or is expected to occur [Nekola and White,

1999], such as a species fundamental niche, or the total area measured by an EO sensor.

• Grain size: the size of the smallest individual unit of measurement [Jensen and Lulla, 1987], such as a

plot or transect in ecology, or the ground sampling distance of an Earth Observation sensor.

• Multi-sensor fusion: integrating measurements from multiple sensors with complementary spatial and

temporal characteristics to characterise a single pattern [Hilker et al., 2009].

• Radiometric calibration: the conversion of raw image data (e.g. in digital number format) to units of
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absolute radiance (e.g. in W m−2 sr−1 µm−1) to standardise data from multiple sensors into a common

scale [Chander et al., 2009].

• Sensor fidelity : the ability of a sensor to discriminate between land surface properties, and to

discriminate signal from noise across the dynamic range of the sensor [Campbell and Wynne, 2011].

• Sensor type: general classifications of EO sensors based on the range of electromagnetic radiation

measured, and how it was measured. Sensors are typically classified as active (i.e., sensors that emit

their own energy, then record the reflection of that energy by the surface) or passive (i.e., sensors that

measure energy emitted by the surface, not generated by the sensor). Radar sensors (e.g. Sentinel-1)

are an example of active microwave (1 mm to 1 m) sensors. Multispectral sensors (e.g., Landsat)

are an example of passive optical sensors that measure a range of typically visible (0.38–0.78 µm)

to near-infrared (0.78–1.3 µm) or shortwave-infrared (1.3–3 µm) wavelengths [Campbell and Wynne,

2011].
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Supplemental Figures and Tables

Figure B.1: Per-species secondary model performance metrics applied to test data calculated using
per-crown prediction probabilities. Metrics weighted by the true negative rate (i.e., accuracy and
specificity) were high for all species since the models correctly predicted the most common species.
However, metrics weighted by the true positive rate (i.e., precision and recall) were more variable
since there were fewer than six observed crowns for seven of the nine species. This penalized rare
species misclassifications.
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Figure B.2: Confusion matrix computed from the binary classification results of the CCB-ID model
on the competition test data. These metrics were calculated using the independent crown data. Bold
entries highlight correct model predictions.
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Sensor EBV Resoution (m) Revisit time (d) Sensor type
ALOS-AVNIR-2 Forest Cover 10 2 Multispectral
ALOS-PALSAR Forest Cover 10-100 46 Radar-L-Band
ALOS-PALSAR-2 Forest Cover 3-60 46 Radar-L-Band
ASTER Functional Composition 15-90 16 Multispectral-Thermal
AVHRR Land Cover 1100 0.5 Multispectral-Thermal
CBERS-IRMSS/WFI Land Cover 20-258 3-26 Multispectral
Cosmo-SkyMed-SAR Aboveground Biomass 1-100 0.5-5 Radar-X-band
Envisat-AATSR Disturbance Regime 1000 3 Multispectral-Thermal
Envisat-ASAR Ecosystem Extent 30-1000 2-7 Radar-C-Band
ERS-ATSR Disturbance Regime 1000 3 Multispectral-Thermal
ERS-AMI-SAR Soil Moisture 30-1000 35 Radar-C-Band
Formosat-2 Land Cover 2-8 1 Multispectral
FY-1-MVISR Disturbance Regime 1100 3-4 Multispectral-Thermal
FY-3-MERSI Leaf Area Index 250-1100 1 Multispectral-Thermal
GeoEye-1 Species Occurrence 0.4-1.65 2.1-8.3 Multispectral
HJ-1A-HSI Land Cover 100 4-31 Hyperspectral
IRMSS-HJ-1B Disturbance Regime 150-300 4 Multispectral-Thermal
ICESat-GLAS Tree Height 66 33-91 Large-footprint LiDAR
IKONOS Taxonomic Diversity 1-4 3 Multispectral
Landsat-TM Forest Cover 30-120 16 Multispectral-Thermal
Landsat-ETM+ Land Cover 30-60 16 Multispectral-Thermal
Landsat-OLI Phenology 15-30 16 Multispectral-Thermal
EO-1-ALI Land Cover 10-30 16 Multispectral
EO-1-Hyperion Physiological Traits 30 16 Hyperspectral
MODIS Leaf Area Index 250-1000 1-2 Multispectral-Thermal
Planet Net primary productivity 3-5 1 Multispectral
Pleaides-HiRI Taxonomic Diversity 0.7-2.8 2 Multispectral
QuickBird Species Occurrence 2.4-0.6 2.5-5.6 Multispectral
RadarSat-1 Ecosystem Extent 8-100 24 Radar-C-Band
RadarSat-2 Ecosystem Extent 3-100 24 Radar-C-Band
RapidEye Land Cover 5 1-5.5 Multispectral
Resourcesat-AWiFS Disturbance Regime 5.8-56 5 Multispectral
RISAT-1 Taxonomic Diversity 3-50 25 Radar-C-Band
Sentinel-1A Soil Moisture 5-25 12 Radar-C-Band
Sentinel-2A Ecosystem Extent 10-20 5-10 Multispectral-Thermal
SPOT-HRV Habitat Structure 10-20 2-3 Multispectral
SPOT-HRVIR Ecosystem Extent 10-20 2-3 Multispectral
SPOT-Vegetation Disturbance Regime 1000 1 Multispectral
SPOT-HRG Forest Cover 2.5-20 2-3 Multispectral
Suomi NPP-VIIRS Disturbance Regime 375-750 0.5-1 Multispectral-Thermal
Tandem-X Aboveground Biomass 1-18 11 Radar-X-Band
TerraSAR-X Functional Composition 1-18 11 Radar-X-Band
WorldView-2 Species Occurrence 0.5-1.8 1.1-3.7 Multispectral
WorldView-3 Species Occurrence 0.5-3.7 1-4.5 Multispectral

Table B.1: List of Satellite Earth observation sensors used to measure biodiversity patterns using the
Essential Biodiversity Variables (EBV) framework.
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Aedes aegypti Aedes albopictus
Population-log 17.9 LST-variance 51.9
LST-variance 13.3 Population-cattle 10.3
PCP-mean 12.3 PCP-variance 10
LAI-mean 12.1 PCP-mean 7.5
LAI-variance 11.4 PCP-skew 4.9
LST-mean 10.3 LST-mean 3.7
Population-cattle 9.5 Population-log 3.2
PCP-variance 8.2 LAI-mean 2.7
PCP-skew 2.8 LC-Trees 2.3
LST-skew 1.8 LST-skew 2
LC-Trees 0.3 LAI-variance 1.4

Table B.2: Sensitivity analysis showing permutation importance scores for 11 environmental features.
Temperature variance is a strong independent predictor of Aedes albopictus spatial distributions, and
Ae. aegypti was less sensitive to permutation in any one variable. These scores were generated by
randomly permuting covariate values one by one, computing loss in model test performance, then
scaling and ranking features based on the total range of model performance loss by vector.
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Site Name Country code Latitude Longitude Aedes count Non-Aedes count Land cover class
SV01 CR 8.813 -82.967 0 3 urban
SV02 CR 8.834 -82.974 0 8 urban
SV05 CR 8.821 -82.967 1 6 urban
SV06 CR 8.827 -82.956 0 12 urban
ISLA CR 8.832 -82.963 0 0 agriculture
SL01 CR 8.819 -82.912 5 15 urban
SL02 CR 8.815 -82.905 12 14 urban
CB01 CR 8.742 -82.944 3 2 urban
CB02 CR 8.744 -82.951 0 4 urban
CB03 CR 8.743 -82.949 14 23 urban
CB05 CR 8.751 -82.951 2 3 urban
CB04 CR 8.752 -82.948 2 18 urban
CN03 CR 8.650 -82.979 3 2 urban
OP01 CR 8.629 -82.967 1 10 agriculture
OP03 CR 8.630 -82.969 11 18 agriculture
OP03B CR 8.630 -82.970 4 28 agriculture
CN04 CR 8.644 -82.947 1 209 urban
CN06 CR 8.651 -82.931 5 7 urban
SATE CR 8.809 -82.924 2 2 agriculture
GABO CR 8.802 -82.972 0 12 forest edge
GAPA CR 8.806 -82.974 0 97 forest edge
RIJA CR 8.787 -82.964 0 172 forest
MELI CR 8.789 -82.968 0 244 forest
PV01 CR 8.427 -83.102 3 8 urban
PV02 CR 8.426 -83.101 0 2 agriculture
PV04 CR 8.379 -83.144 0 2 agriculture
PV05 CR 8.347 -83.126 0 1 forest
SAFR CR 8.765 -82.943 0 7 agriculture
ELPU CR 8.769 -82.950 0 5 agriculture
PINO CR 8.844 -82.970 6 8 agriculture
SABO CR 8.800 -82.917 5 2 urban
SV04 CR 8.831 -82.974 5 7 urban
FRAG CR 8.785 -82.989 0 20 forest edge
FILA CR 8.786 -82.978 0 16 forest
LOAN CR 8.783 -82.938 0 204 forest
FELO CR 8.846 -82.878 2 2 agriculture
VALE CR 8.846 -82.900 0 7 agriculture
QUST CR 8.815 -82.924 0 3 forest
PM01 PE -12.589 -69.196 1 27 urban
PM02 PE -12.596 -69.196 13 15 urban
PM03 PE -12.598 -69.197 7 12 urban
PM04 PE -12.594 -69.194 3 13 urban
PM05 PE -12.593 -69.194 1 16 urban
PM06 PE -12.588 -69.198 2 36 urban
PM07 PE -12.589 -69.201 4 15 urban
PM08 PE -12.594 -69.200 9 87 urban
PM09 PE -12.605 -69.193 0 38 urban
PM10 PE -12.584 -69.196 2 2 urban
PM11 PE -12.584 -69.202 12 88 urban
PM12 PE -12.578 -69.201 0 105 urban
PM13 PE -12.577 -69.193 10 88 urban
PM14 PE -12.572 -69.195 9 136 urban
PM15 PE -12.562 -69.192 0 115 urban
PM16 PE -12.571 -69.175 0 289 agriculture
PM17 PE -12.570 -69.175 3 465 agriculture

Table B.3: Plot locations and abundance records from all Aedes and non-Aedes mosquito samples.
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Site Name Country code Latitude Longitude Aedes count Non-Aedes count Land cover class
PM18 PE -12.575 -69.180 0 131 urban
PM19 PE -12.603 -69.199 5 20 urban
PM20 PE -12.606 -69.202 3 79 agriculture
PM21 PE -12.607 -69.197 1 14 urban
PM22 PE -12.596 -69.173 0 49 agriculture
PM23 PE -12.599 -69.180 0 2 agriculture
PM24 PE -12.603 -69.181 2 208 agriculture
MA01 PE -13.103 -70.368 0 4 urban
MA02 PE -13.100 -70.367 1 27 urban
MA03 PE -13.099 -70.372 0 4 urban
MA04 PE -13.098 -70.369 2 5 urban
MA05 PE -13.100 -70.367 1 4 urban
MA06 PE -13.102 -70.368 8 1 urban
MA07 PE -13.103 -70.370 0 8 urban
MA08 PE -13.105 -70.369 1 7 urban
MA09 PE -13.103 -70.369 1 10 urban
MA10 PE -13.062 -70.350 0 5 forest edge
MA11 PE -13.048 -70.346 0 2 agriculture
MA12 PE -13.037 -70.345 0 28 forest
MA13 PE -13.030 -70.348 0 10 forest
MA14 PE -13.069 -70.354 0 11 forest
MA15 PE -13.077 -70.359 0 221 urban
MA16 PE -13.113 -70.372 0 14 urban
MA18 PE -13.086 -70.362 0 11 urban
MA19 PE -13.086 -70.363 0 31 urban
MA20 PE -13.081 -70.360 0 2 urban
MA23 PE -13.073 -70.358 1 22 urban
MA21 PE -13.072 -70.358 1 16 urban
MA22 PE -13.072 -70.360 0 61 agriculture
MA24 PE -13.084 -70.362 0 16 urban
VP01 PE -11.043 -69.573 0 48 agriculture
VP02 PE -11.043 -69.573 0 23 agriculture
VP04 PE -11.042 -69.574 0 173 agriculture
VP05 PE -11.042 -69.572 0 40 agriculture
VP06 PE -11.043 -69.574 0 3 agriculture
VP07 PE -11.043 -69.575 0 17 agriculture
VP02 PE -11.043 -69.573 0 23 agriculture
VP03 PE -11.042 -69.571 0 11 agriculture
VP09 PE -11.043 -69.574 0 4 agriculture
VP08 PE -11.043 -69.574 0 19 agriculture
VP10 PE -11.033 -69.568 0 3 agriculture
VP11 PE -11.034 -69.570 0 10 agriculture
VP12 PE -11.035 -69.571 0 13 agriculture
VP13 PE -11.036 -69.572 0 35 agriculture
VP14 PE -11.042 -69.574 0 186 agriculture
VP15 PE -11.042 -69.575 0 29 agriculture
VP19 PE -11.035 -69.562 0 19 agriculture
VP20 PE -11.035 -69.563 0 2 forest edge
VP21 PE -11.036 -69.564 0 9 forest edge
VP22 PE -11.036 -69.563 0 7 agriculture
VP23 PE -11.036 -69.563 0 19 agriculture
VP24 PE -11.036 -69.563 0 59 agriculture
VP16 PE -11.047 -69.574 0 5 agriculture
VP17 PE -11.055 -69.572 0 17 agriculture
VP18 PE -11.040 -69.576 0 13 agriculture
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Site Name Country code Latitude Longitude Aedes count Non-Aedes count Land cover class
IB01 PE -11.669 -69.221 2 70 forest
IB02 PE -11.667 -69.226 0 38 forest
IB03 PE -11.662 -69.234 0 12 agriculture
IB04 PE -11.655 -69.240 0 118 agriculture
IB05 PE -11.625 -69.254 0 11 forest edge
IB06 PE -11.573 -69.291 0 31 forest edge
IB07 PE -11.573 -69.292 0 21 forest
IB08 PE -11.539 -69.293 0 114 forest
IB09 PE -11.506 -69.300 0 130 forest edge
IB10 PE -11.502 -69.302 0 133 forest edge
IB11 PE -11.500 -69.303 1 59 forest edge
IB12 PE -11.495 -69.308 1 91 forest edge
IB13 PE -11.478 -69.308 0 44 forest edge
IB15 PE -11.463 -69.306 2 87 forest edge
IB16 PE -11.447 -69.268 0 35 forest
IB17 PE -11.447 -69.270 0 105 forest
IB18 PE -11.447 -69.270 0 15 forest
IB19 PE -11.446 -69.272 0 18 forest
IB20 PE -11.446 -69.273 1 27 forest
IB21 PE -11.446 -69.274 2 39 forest
IB22 PE -11.446 -69.276 0 32 forest
IB23 PE -11.445 -69.279 0 29 forest
IB24 PE -11.445 -69.281 0 5 forest
IB25 PE -11.470 -69.305 0 259 agriculture
PM25 PE -12.576 -69.155 0 706 agriculture
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[Borras et al., 2012] Borras, S. M., Franco, J. C., Gómez, S., Kay, C., and Spoor, M. (2012). Land grabbing

in latin america and the caribbean. J. Peasant Stud., 39(3-4):845–872.

[Borras and Franco, 2012] Borras, Jr, S. M. and Franco, J. C. (2012). Global land grabbing and trajectories

of agrarian change: A preliminary analysis. Journal of Agrarian Change, 12(1):34–59.

[Bradley et al., 2007] Bradley, B. A., Jacob, R. W., Hermance, J. F., and Mustard, J. F. (2007). A curve

fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote

Sens. Environ., 106(2):137–145.

[Brady et al., 2012] Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G.,

Moyes, C. L., Farlow, A. W., Scott, T. W., and Hay, S. I. (2012). Refining the global spatial limits of

dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis., 6(8):e1760.

[Brady et al., 2014] Brady, O. J., Golding, N., Pigott, D. M., Kraemer, M. U. G., Messina, J. P., Reiner, Jr,

R. C., Scott, T. W., Smith, D. L., Gething, P. W., and Hay, S. I. (2014). Global temperature constraints

on aedes aegypti and ae. albopictus persistence and competence for dengue virus transmission. Parasit.

Vectors, 7:338.

[Brandt et al., 2017] Brandt, L. A., Benscoter, A. M., Harvey, R., Speroterra, C., Bucklin, D., Romañach,
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[Hallé et al., 1978] Hallé, F., Oldeman, R. A. A., and Tomlinson, P. B. (1978). Tropical Trees and Forests:

An Architectural Analysis. Springer, Berlin, Heidelberg.

[Hamrick, 2016] Hamrick, K. (2016). State of private investment in conservation 2016: A landscape assessment

of an emerging market. Forest Trends.

[Hansen et al., 2013] Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina,

A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L.,

Justice, C. O., and Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover

change. Science, 342(6160):850–853.

[Hastie and Tibshirani, 2004] Hastie, T. and Tibshirani, R. (2004). Generalized additive models. In Ency-

clopedia of Statistical Sciences. John Wiley & Sons, Inc.

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). Unsupervised learning. In Hastie,

T., Tibshirani, R., and Friedman, J., editors, The Elements of Statistical Learning: Data Mining, Inference,

and Prediction, pages 485–585. Springer New York, New York, NY.

http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html
http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html
http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html


BIBLIOGRAPHY 102

[Hawkins, 2012] Hawkins, B. A. (2012). Eight (and a half) deadly sins of spatial analysis: Spatial analysis.

J. Biogeogr., 39(1):1–9.

[Henderson and Lewis, 2008] Henderson, F. M. and Lewis, A. J. (2008). Radar detection of wetland ecosys-

tems: a review. Int. J. Remote Sens., 29(20):5809–5835.

[Hesketh and Sánchez-Azofeifa, 2012] Hesketh, M. and Sánchez-Azofeifa, G. A. (2012). The effect of seasonal

spectral variation on species classification in the panamanian tropical forest. Remote Sens. Environ.,

118:73–82.

[Hilker et al., 2009] Hilker, T., Wulder, M. A., Coops, N. C., Linke, J., McDermid, G., Masek, J. G., Gao,

F., and White, J. C. (2009). A new data fusion model for high spatial- and temporal-resolution mapping

of forest disturbance based on landsat and MODIS. Remote Sens. Environ., 113(8):1613–1627.

[Hopp and Foley, 2001] Hopp, M. J. and Foley, J. A. (2001). Global-Scale relationships between climate and

the dengue fever vector, aedes aegypti. Clim. Change, 48(2):441–463.

[Hortal et al., 2015] Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., and Ladle,

R. J. (2015). Seven shortfalls that beset Large-Scale knowledge of biodiversity. Annu. Rev. Ecol. Evol.

Syst., 46(1):523–549.

[Hou et al., 2013] Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M.,

Oki, R., Nakamura, K., and Iguchi, T. (2013). The global precipitation measurement mission. Bull. Am.

Meteorol. Soc., 95(5):701–722.

[Hubbell, 2001] Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32).

Princeton University Press.

[Huffman et al., 2007] Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong,

Y., Bowman, K. P., and Stocker, E. F. (2007). The TRMM multisatellite precipitation analysis (TMPA):

Quasi-Global, multiyear, Combined-Sensor precipitation estimates at fine scales. J. Hydrometeorol.,

8(1):38–55.

[Hungate et al., 2017] Hungate, B. A., Barbier, E. B., Ando, A. W., Marks, S. P., Reich, P. B., van Gestel,

N., Tilman, D., Knops, J. M. H., Hooper, D. U., Butterfield, B. J., and Cardinale, B. J. (2017). The

economic value of grassland species for carbon storage. Sci Adv, 3(4):e1601880.

[Hunter, 2007] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science

Engineering, 9(3):90–95.

[Hurlbert and Jetz, 2007] Hurlbert, A. H. and Jetz, W. (2007). Species richness, hotspots, and the scale

dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. U. S. A., 104(33):13384–13389.



BIBLIOGRAPHY 103

[Hutchinson, 1953] Hutchinson, G. E. (1953). The concept of pattern in ecology. Proceedings of the Academy

of Natural Sciences of Philadelphia, 105:1–12.

[Immitzer et al., 2012] Immitzer, M., Atzberger, C., and Koukal, T. (2012). Tree species classification with

random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing,

4(9):2661–2693.

[IPBES, 2019] IPBES (2019). Summary for policymakers of the global assessment report on biodiversity

and ecosystem services. Technical Report 1, IPBES Secretariat.

[Irons et al., 2012] Irons, J. R., Dwyer, J. L., and Barsi, J. A. (2012). The next landsat satellite: The landsat

data continuity mission. Remote Sens. Environ., 122(Supplement C):11–21.

[Iyengar and Massey, 2018] Iyengar, S. and Massey, D. S. (2018). Scientific communication in a post-truth

society. Proc. Natl. Acad. Sci. U. S. A.

[Jacquemoud et al., 2009] Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner,

G. P., François, C., and Ustin, S. L. (2009). Prospect+ sail models: A review of use for vegetation

characterization. Remote sensing of environment, 113:S56–S66.

[Jansen and Beebe, 2010] Jansen, C. C. and Beebe, N. W. (2010). The dengue vector aedes aegypti: what

comes next. Microbes Infect., 12(4):272–279.

[Jensen and Lulla, 1987] Jensen, J. R. and Lulla, K. (1987). Introductory digital image processing: A remote

sensing perspective. Geocarto Int., 2(1):65–65.

[Jetz et al., 2016] Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F. W., Asner, G. P.,

Guralnick, R., Kattge, J., Latimer, A. M., Moorcroft, P., Schaepman, M. E., Schildhauer, M. P., Schneider,

F. D., Schrodt, F., Stahl, U., and Ustin, S. L. (2016). Monitoring plant functional diversity from space.

Nat Plants, 2(3):16024.

[Jetz et al., 2012] Jetz, W., McPherson, J. M., and Guralnick, R. P. (2012). Integrating biodiversity

distribution knowledge: toward a global map of life. Trends Ecol. Evol., 27(3):151–159.

[Jia and Richards, 1999] Jia, X. and Richards, J. A. (1999). Segmented principal components transformation

for efficient hyperspectral remote-sensing image display and classification. IEEE Trans. Geosci. Remote

Sens., 37(1):538–542.

[Jones et al., 2018] Jones, K. R., Venter, O., Fuller, R. A., Allan, J. R., Maxwell, S. L., Negret, P. J., and

Watson, J. E. M. (2018). One-third of global protected land is under intense human pressure. Science,

360(6390):788–791.

[Jordan, 1969] Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor.

Ecology, 50(4):663–666.



BIBLIOGRAPHY 104

[Justice et al., 1998] Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K.,

Salomonson, V. V., Privette, J. L., Riggs, G., Strahler, A., Lucht, W., Myneni, R. B., Knyazikhin, Y.,

Running, S. W., Nemani, R. R., Wan, Z., Huete, A. R., van Leeuwen, W., Wolfe, R. E., Giglio, L., Muller,

J., Lewis, P., and Barnsley, M. J. (1998). The moderate resolution imaging spectroradiometer (MODIS):

land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens., 36(4):1228–1249.

[Kamgang et al., 2012] Kamgang, B., Nchoutpouen, E., Simard, F., and Paupy, C. (2012). Notes on the

blood-feeding behavior of aedes albopictus (diptera: Culicidae) in cameroon. Parasit. Vectors, 5:57.

[Kampe et al., 2010] Kampe, T. U., Johnson, B. R., Kuester, M. A., and Keller, M. (2010). NEON: the first

continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry

and structure. JARS, 4(1):043510.

[Kattge et al., 2011] Kattge, J., Dı́az, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E.,

Westoby, M., Reich, P. B., Wright, I. J., Cornelissen, J. H. C., Violle, C., Harrison, S. P., Van BODEGOM,

P. M., Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., Atkin, O., Bahn,

M., Baker, T. R., Baldocchi, D., Bekker, R., Blanco, C. C., Blonder, B., Bond, W. J., Bradstock, R.,

Bunker, D. E., Casanoves, F., Cavender-Bares, J., Chambers, J. Q., Chapin, Iii, F. S., Chave, J., Coomes,

D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L., Durka, W., Elser, J., Esser, G., Estiarte, M.,

Fagan, W. F., Fang, J., Fernández-Méndez, F., Fidelis, A., Finegan, B., Flores, O., Ford, H., Frank, D.,

Freschet, G. T., Fyllas, N. M., Gallagher, R. V., Green, W. A., Gutierrez, A. G., Hickler, T., Higgins, S. I.,

Hodgson, J. G., Jalili, A., Jansen, S., Joly, C. A., Kerkhoff, A. J., Kirkup, D., Kitajima, K., Kleyer, M.,
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Barrett, C. B., Glick, H. B., Hengeveld, G. M., Nabuurs, G.-J., Pfautsch, S., Viana, H., Vibrans, A. C.,

Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J. V., Chen, H. Y. H., Lei, X.,

Schelhaas, M.-J., Lu, H., Gianelle, D., Parfenova, E. I., Salas, C., Lee, E., Lee, B., Kim, H. S., Bruelheide,

H., Coomes, D. A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S., Sonké, B., Tavani, R., Zhu,

J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E. B., Neldner, V. J., Ngugi, M. R., Baraloto, C., Frizzera,
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Vectorial capacity of aedes aegypti: effects of temperature and implications for global dengue epidemic

potential. PLoS One, 9(3):e89783.

[Locatelli et al., 2011] Locatelli, B., Evans, V., Wardell, A., Andrade, A., and Vignola, R. (2011). Forests and

climate change in latin america: Linking adaptation and mitigation. For. Trees Livelihoods, 2(1):431–450.



BIBLIOGRAPHY 109

[Mac Nally et al., 2004] Mac Nally, R., Fleishman, E., Bulluck, L. P., and Betrus, C. J. (2004). Comparative

influence of spatial scale on beta diversity within regional assemblages of birds and butterflies: Spatial

scale and beta diversity in birds and butterflies. J. Biogeogr., 31(6):917–929.

[MacArthur and Wilson, 1967] MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeog-

raphy. Princeton University Press.

[Maillard et al., 2008] Maillard, P., Alencar-Silva, T., and Clausi, D. A. (2008). An evaluation of radarsat-1

and ASTER data for mapping veredas (palm swamps). Sensors, 8(9):6055–6076.
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aedes albopictus (diptera: Culicidae) in san luis potosi, mexico. J. Vector Ecol., 41(2):314–315.

[Osnas et al., 2013] Osnas, J. L. D., Lichstein, J. W., Reich, P. B., and Pacala, S. W. (2013). Global leaf

trait relationships: mass, area, and the leaf economics spectrum. Science, 340(6133):741–744.

[Ouyang et al., 2016] Ouyang, Z., Zheng, H., Xiao, Y., Polasky, S., Liu, J., Xu, W., Wang, Q., Zhang, L.,

Xiao, Y., Rao, E., Jiang, L., Lu, F., Wang, X., Yang, G., Gong, S., Wu, B., Zeng, Y., Yang, W., and

Daily, G. C. (2016). Improvements in ecosystem services from investments in natural capital. Science,

352(6292):1455–1459.

[Paaijmans et al., 2013] Paaijmans, K. P., Heinig, R. L., Seliga, R. A., Blanford, J. I., Blanford, S., Murdock,

C. C., and Thomas, M. B. (2013). Temperature variation makes ectotherms more sensitive to climate

change. Glob. Chang. Biol., 19(8):2373–2380.

[Padmanabha et al., 2012] Padmanabha, H., Durham, D., Correa, F., Diuk-Wasser, M., and Galvani, A.

(2012). The interactive roles of aedes aegypti super-production and human density in dengue transmission.

PLoS Negl. Trop. Dis., 6(8):e1799.

[Pal, 2005] Pal, M. (2005). Random forest classifier for remote sensing classification. Int. J. Remote Sens.,

26(1):217–222.

[Palmer and White, 1994] Palmer, M. W. and White, P. S. (1994). Scale dependence and the Species-Area

relationship. Am. Nat., 144(5):717–740.



BIBLIOGRAPHY 114

[Pan American Health Organization / World Health Organization, 2020] Pan American Health Organiza-

tion / World Health Organization (2020). Epidemiological update: Dengue. Technical Report 1, PAHO /

WHO.
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